Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 39, nr 4 | 939-948
Tytuł artykułu

Almost continuity, regular set-connected mappings and some separation axioms

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let f : (X, r ) approaches (Y,sigma) be a mapping, let (X, rs) denote the topological space generated by the family of all regular open subsets of (X, r ) and let fxs : (X, rs) !approaches (Y, sigma) be defined by fxs (x) = f(x) for each x is an element of X. In the paper relationships between almost continuity of f, almost continuity of fxs and some other types of mappings (r.s.c. mappings in particular) are studied.
Wydawca

Rocznik
Strony
939-948
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
  • Institute of Mathematics Casimirus the Great University ul. Weyssenhoffa 11 85-072 Bydgoszcz, Poland, imath@ukw.edu.pl
Bibliografia
  • [1] D. E. Cameron, G. Woods, s-continuous and s-open mappings, (preprint).
  • [2] D. A Carnahan, Some properties related to compactness in topological spaces, Ph.D. thesis, University of Arkansas, 1973.
  • [3] M. Cicek, A note on two weak forms of open mappings and Baire spaces, Demonstratio Math. 30 (3) (1997), 585–590.
  • [4] C. G. Crossley, S. K. Hildebrand, Semi-closure, Texas J. Sci. 22(2-3) (1971), 99–112.
  • [5] G. Di Maio, T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math. 18(3) (1987), 226–233.
  • [6] J. Dontchev, M. Ganster, I. Reilly, More on almost s-continuity, Topology Atlas, Preprint #212, URL: http://www.unipissing.ca/topology/p/a/a/h/11.htm
  • [7] J. Dontchev, T. Noiri, Contra-semicontinuous functions, Math. Pannon. 10(2) (1999), 159–168.
  • [8] N. Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly 68 (1961), 44–46.
  • [9] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41.
  • [10] P. E. Long, L. L. Herrington, Properties of almost-continuous functions, Bolletino U. M. I. 10(4) (1974), 336–342.
  • [11] S. N. Maheshwari, R. Prasad, On s-regular spaces, Glasnik Mat. 10 (30) (1975), 347–350.
  • [12] T. Noiri, Between continuity and weak continuity, Boll. Un. Mat. Ital. 9(4) (1974), 647–654.
  • [13] T. Noiri, Almost-continuity and some separation axioms, Glasnik Mat. 9 (29) (3) (1974), 131–135.
  • [14] T. Noiri, A note on semi-regularizations, Glasnik Mat. 10 (30) (1975), 141–143.
  • [15] T. Noiri, On S-closed subspaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 64 (1978), 157–162.
  • [16] D. Rose, Weak openness and almost openness, Internat. J. Math. and Math. Sci. 7 (1984), 35–40.
  • [17] M. K. Singal, A. R. Singal, Almost-continuous mappings, Yokohama Math. J. 16 (1968), 63–73.
  • [18] M. K. Singal, S. P. Arya, On almost-regular spaces, Glasnik Mat. 4 (24)(1) (1969), 89–99.
  • [19] D. Sivaraj, Properties of I-compact subsets, Bull. Malaysian Math. Soc. 1(8) (1985), 15–21.
  • [20] M. H. Stone, Applications of the theory of boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 375–481.
  • [21] S. F. Tadros, A. B. Khalaf, On regular semi-open sets and s_-closed spaces, Tamkang J. Math. 23 (4) (1992), 337–348.
  • [22] T. Thompson, S-closed spaces, Proc. Amer. Math. Soc. 60 (1976), 335–338.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0018-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.