Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 39, nr 3 | 553-570
Tytuł artykułu

Weak predictable processes in finite von Neumann algebras

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigate the predictable processes as a strong limit of a sequence of simple processes and their stochastic integrals as L2-limit of stochastic integrals of a sequence of simple processes. In the second case new class of predictable processes is defined and characterized, the mutual relations between the von Neumann algebras generated by the various classes of predictable processes are examined.
Wydawca

Rocznik
Strony
553-570
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
Bibliografia
  • [1] C. Barnett, B. Thakrar, Time projection in a von Neumann algebra, J. Operator Theory 18 (1987), 19-31.
  • [2] C. Barnett, B. Thakrar, A non-commutative random stopping theorem, J. Funct. Anal. 88 (1990), 342-350.
  • [3] C. Barnett, I. F. Wild, Random times and time projections, Proc. Amer. Math. Soc. 110 (1990), 425-440.
  • [4] C. Barnett, I. F. Wild, Random times, predictable processes, and stochastic integration in finite von Neumann algebras, Proc. London Math. Soc. (3) 67 (1993), 355-383.
  • [5] C. Barnett, R. F. Streater and I. F. Wilde, Quasi-free quantum stochastic integrations for CAR and CCR, J. Funct. Anal 52 (1983), 19-47.
  • [6] C. Barnett, V. Camillo, Stopping and projection of non-adapted processes, Soochow J.Math. 23 (2) (1997), 187-212.
  • [7] C. Barnett, T. Lyons, Stopping non-commutative processes, Mat. Proc. Comb. Phil. Soc. 99 (1986), 151-161.
  • [8] C. Barnett, S. Voliotis, Stopping and integration in a product structure, J. Operator Theory 34 (1995), 145-175.
  • [9] A. A. A. Mohammed, Stochastic integration in finite von Neumann algebras, Ph.D. Thesis, Faculty of Mathematics, Lodz University, 2000.
  • [10] A. A. A. Mohammed, Stopping and stochastic integrals as closable operators, Probab. Math. Statist. 22, 1 (2002), 167-180.
  • [11] A. A. A. Mohammed, On the order structure of time projection, J. Appl. Anal., Vol. 8, No. 2 (2002), pp. 279-95.
  • [12] J. R. Ringrose, R. V. Kadison, Fundamentals of The Theory of Operator Algebras, Academic Press, New York-London, 1983.
  • [13] M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, New York-Berlin-Heidelberg, 1979.
  • [14] F. J. Yeadon, Non-commutative Lp-spaces, Math. Proc. Cambridge Phil. Soc. 77 (1975), 91-102.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0015-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.