Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | Vol. 45, nr 4 | 947-952
Tytuł artykułu

Closedness of certain classes of functions in the topology of uniform convergence

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, closedness of certain classes of functions in VX in the topology of uniform convergence is observed. In particular, we show that the function spaces SC(X, Y) of quasi continuous (…) functions, (…) (X, Y ) of (…)-continuous functions and L(X,Y) of cl-supercontinuous functions are closed in YX in the topology of uniform convergence.
Wydawca

Rocznik
Strony
947-952
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
autor
Bibliografia
  • [1] S.P.Arya, M.Deb, On mappings almost continuous in the sense of Frolík Math. Student 41 (1973), 311-321.
  • [2] E.Ekici, Generalization of perfectly continuous, regular set-connected and clopen functions Acta Math.Hungar. 107(3) (2005), 193-206.
  • [3] E.Ekici, V.Popa, Some properties of upper and lower clopen continuous multifunctions Bul. Stint. Univ. Politeh. Timis. Ser. Mat. Fiz. 50(64) (2005), 1-11.
  • [4] Z.Frolik, Remarks concerning the invariance of Baire spaces under mappings Czechoslovak Math.J. 11(3) (1961), 381-385.
  • [5] K.R.Gentry, H.B.Hoyle, III,Somewhat continuous functions Czechoslovak Math. J.21(1) (1971), 5-12.
  • [6] H.B.Hoyle, III, Function spaces for somewhat continuous functions Czechoslovak Math.J. 21(1) (1971), 31-34.
  • [7] J.L.Kelley, General Topology D.Van Nostrand Company, New York, 1955.
  • [8] S.Kempisty, Sur les fonctions quasicontnues Fund.Math.19 (1932), 184-197.
  • [9] J.K.Kohli, A class of spaces containing all connected and all locally connected spaces Math. Nachr. 82(1978), 121-129.
  • [10] J.K.Kohli, D.Singh, Function spaces and strong variants of continuity Appl.Gen. Topol. 9(1) (2008), 33-38.
  • [11] J.K.Kohli, D.Singh, Almost cl-supercontinuous functions Appl.Gen.Topol.10(1) (2009), 1-12.
  • [12] N.Levine, Semi-open sets and semi-continuity in topological spaces Amer.Math. Monthly 70 (1963), 36-41.
  • [13] A.S.Mashhour, I.A.Hasanein, S.N.El Deeb, _-continuous and _-open mappings Acta Math.Hungar.41 (1983), 213-218.
  • [14] S.A.Naimpally, Function space topologies for connectivity and semiconnectivity functions Canad. Math. Bull.9 (1966), 349-352.
  • [15] S.A.Naimpally, Graph topology for function spaces Trans. Amer. Math.Soc.123 (1966), 267-272.
  • [16] S.A.Naimpally, On strongly continuous functions Amer. Math. Monthly 74 (1967), 166-169.
  • [17] O.Njastad, On some classes of nearly open sets Pacic J.Math.15 (1965), 961-970.
  • [18] I.L.Reilly, M.K.Vamanamurthy, On supercontinuous mappings Indian J.Pure Appl. Math. 14(6) (1983), 767-772.
  • [19] W.Sierpiński, Sur une propriété de fonctions réelles quelconques Matematiche (Catania) 8 (1953), 43-48.
  • [20] D.Singh, cl-supercontinuous functions Appl.Gen.Topol.8(2)(2007), 293-300.
  • [21] J.R.Stallings, Fixed point theorems for connectivity maps Fund. Math.47 (1959), 249-263.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0035-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.