Czasopismo
2012
|
Vol. 45, nr 4
|
909-927
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We study the geometric structures of parabolic geometries. A parabolic geometry is defined by a parabolic subgroup of a simple Lie group corresponding to a subset of the positive simple roots. We say that a parabolic geometry is fundamental if it is defined by a subset corresponding to a single simple root. In this paper we will be mainly concerned with such fundamental parabolic geometries. Fundamental geometries for the Lie algebra of (…) type are Grassmann structures. For (…) types, we investigate the geometric feature of the fundamental geometries modeled after the quotients of the real simple groups of split type by the parabolic subgroups. We name such geometries Lie tensor product structures. Especially, we call Lie tensor metric structure for (…) or (…) type and Lie tensor symplectic structure for (…) type. For each manifold with a Lie tensor product structure, we give a unique normal Cartan connection by the method due to Tanaka. Invariants of the structure are the curvatures of the connection.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
909-927
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
autor
- Graduate School Of Mathematics Nagoya University Nagoya, 464-8602 Japan, hsato@math.nagoya-u.ac.jp
Bibliografia
- [1] M. A. Akivis, V. V. Goldberg, Conformal Differential Geometry and its Generalizations, John Wiley and Sons, Inc., New York, 1996.
- [2] T. N. Bailey, M. G. Eastwood, Complex paraconformal manifolds – their differential geometry and twistor theory, Forum Math. 3 (1991), 61–103.
- [3] N. Bourbaki, Groupes et Algèbres de Lie, Chapitre 4, 5 et 6, Hermann, Paris, 1968.
- [4] R. Bryant, Conformal geometry and 3-plane fields on 6-manifolds, in Developments of Cartan Geometry and Related Mathematical Problems, RIMS Symposium Proceedings, vol. 1502 (July, 2006), pp. 1–15.
- [5] R. Bryant, L. Hsu, Rigidity of integral curves of rank 2 distributions, Invent. Math. 114 (1993), 435–461.
- [6] E. Cartan, Sur la structure des groupes infinis de transformations, Ann. Ecole Norm. Supp. 21 (1904), 153–206, (1905), 219–308.
- [7] A. B. Goncharov, Generalized conformal structures on manifolds, Selecta Math. Sov. 6 (1987), 307–340.
- [8] V. Guillemin, S. Sternberg, Sur les systèmes de formes différentielles, Ann. Inst. Fourier, Grenoble 13(2) (1963), 61–74.
- [9] T. Hangan, Géométrie différentielle Grassmannienne, Rev. Roumaine Math. Pures Appl. 11 (1966), 519–531.
- [10] L. Hsu, Calculus of variations via the Griffiths formalism, J. Differential Geom. 36(3) (1992), 551–589.
- [11] Y. I. Manin, Gauge Field Theory and Complex Geometry, Springer-Verlag, Berlin, Heidelberg, New York, 1988.
- [12] B. McKay, Rational curves and ordinary differential equations, Math. DG/0507087.
- [13] Y. I. Mikhailov, On the structure of almost Grassmannian manifolds, Soviet Math. 22 (1978), 54–63.
- [14] Y. Machida, H. Sato, Twistor theory of manifolds with Grassmannian structures, Nagoya Math. J. 160 (2000), 17–102
- [15] R. Montgomery, A Tour of Subriemannian Geometry, their Geodesics and Applications, Mathematical Surveys and Monographs, vol. 91, 2002.
- [16] H. Sato, K. Yamaguchi, Lie Contact Manifolds, in Geometry of Manifolds, K. Shiohama ed., 191–238, Boston Academic Press, 1989.
- [17] H. Sato, K. Yamaguchi, Lie contact manifolds II, Math. Ann. 297(1) (1993), 33–57.
- [18] N. Tanaka, On the equivalence problem associated with simple graded Lie algebras, Hokkaido Math. J. 8 (1979), 23–84.
- [19] K. Yamaguchi, Differential systems associated with simple graded Lie algebras, Adv. Studies in Pure Math. 22 (1993), 413–494.
- [20] K. Yamaguchi, G2-geometry of overdetermined systems of second order, Trends in Math. (Analysis and Geometry in Several Complex Variables) (1999), Birkhäuser, Boston, 289–314.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0035-0033