Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | Vol. 45, nr 4 | 755-777
Tytuł artykułu

Subalgebra lattices of a partial unary algebra

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Necessary and sufficient conditions will be found for quadruples of lattices to be isomorphic to lattices of weak, relative, strong subalgebras and initial segments, respectively, of one partial unary algebra. To this purpose we will start with a characterization of pairs of lattices that are weak and strong subalgebra lattices of one partial unary algebra, respectively. Next, we will describe the initial segment lattice of a partial unary algebra. Applying this result, pairs of lattices of strong subalgebras and initial segments will be characterized. Further, we will characterize pairs of lattices of relative and strong subalgebras and also other pairs of subalgebra lattices of one partial unary algebra.
Wydawca

Rocznik
Strony
755-777
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
Bibliografia
  • [1] W. Bartol, Weak subalgebra lattices, Comment. Math. Univ. Carolin. 31 (1990), 405–410.
  • [2] W. Bartol, Weak subalgebra lattices of monounary partial algebras, Comment. Math. Univ. Carolin. 31 (1990), 411–414.
  • [3] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.
  • [4] W. Bartol, F. Rosselló, L. Rudak, Lectures on Algebras, Equations and Partiality, Technical report B–006, Univ. Illes Balears, Dept. Ciencies Mat. Inf., ed. Rosselló F. 1992.
  • [5] P. Burmeister, A Model Theoretic Oriented Approach to Partial Algebras, Mathematical Research Band 32, Akademie Verlag, Berlin, 1986.
  • [6] P. Crawley, R. P. Dilworth, Algebraic Theory of Lattices, Prentice Hall Inc., Englewood Cliffs, NJ, 1973.
  • [7] T. Evans, B. Ganter, Varieties with modular subalgebra lattices, Bull. Austral. Math. Soc. 28 (1983), 247–254.
  • [8] C. Grätzer, Universal Algebra, second edition, Springer, New York, 1979.
  • [9] J. Johnson, R. L. Seifer, A survey of multi-unary algebras, Mimeographed seminar notes, U. C. Berkeley, 1967, 26 p.
  • [10] B. Jónsson, Topics in Universal Algebra, Lecture Notes in Mathemathics 250, Springer, 1972.
  • [11] K. Pióro, On some non-obvious connections between graphs and partial unary algebras, Czechoslovak Math. J. 50(125) (2000), 295–320.
  • [12] K. Pióro, On the subalgebra lattice of unary algebras, Acta Math. Hungar. 84(1-2) (1999), 27–45.
  • [13] K. Pióro, On a strong property of the weak subalgebra lattice, Algebra Universalis 40 (1998), 477–495.
  • [14] K. Pióro, On connections between hypergraphs and algebras, Arch. Math. (Brno) 36(1) (2000), 45–60.
  • [15] K. Pióro, A property of the weak subalgebra lattice for algebras with some non-equalities, Kyungpook Math. J. 50 (2010), 195–211.
  • [16] K. Pióro, On some unary algebras and their subalgebra lattices, Math. Slovaca 56(3) (2006), 255–273.
  • [17] O. Ore, Theory of Graphs, AMS Colloq. Publ. v. 38, 1962.
  • [18] H. E. Robbins, A theorem on graphs with application to a problem of traffic, Amer. Math. Monthly 46 (1939), 281–283.
  • [19] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, New York, 1994.
  • [20] J. Shapiro, Finite equational bases for subalgebra distributive varieties, Algebra Universalis 24 (1987), 36–40.
  • [21] J. Shapiro, Finite algebras with abelian properties, Algebra Universalis 25 (1988), 334–364.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0035-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.