Czasopismo
2011
|
Vol. 44, nr 3
|
523-534
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
By recent results of M. Stronkowski, it is known that not all modes embed as subreducts into semimodules over commutative unital semirings. Related to this problem is the problem of constructing a (commutative unital) semiring defining the variety of semimodules whose idempotent subreducts lie in a given variety of modes. We provide a general construction of such semirings, along with basic examples and some general properties. The second part of the paper will deal with applications of the general construction to some selected varieties of modes, and will provide a description of semirings determining varieties of semimodules having algebras from these varieties as idempotent subreducts.
Czasopismo
Rocznik
Tom
Strony
523-534
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
autor
- Faculty Of Mathematics And Information Science Warsaw University Of Technology Pl. Politechniki 1 00-661 Warsaw, Poland, apili@alpha.mini.pw.edu.pl
Bibliografia
- [1] U. Hebisch, H. J. Weinert, Semirings-Algebraic Theory and Application in Computer Science, World Scientific, Singapore, 1998.
- [2] B. M. Jabłoński, A. B. Romanowska, On mode reducts of semimodules, Internat. J. Algebra Comput. 21 (2011), 485–504.
- [3] J. Ježek, T. Kepka, Medial Groupoids, Academia, Praha, 1983.
- [4] K. A. Kearnes, Semilattice modes I: the associated semiring, Algebra Universalis 34 (1995), 220–272.
- [5] A. Kravchenko, A. Pilitowska, A. Romanowska, D. Stanovskỳ, Differential modes, Internat. J. Algebra Comput. 18(3) (2008), 567–588.
- [6] A. I. Mal’cev, Algebraičeskie Sistemy, [in Russian], Sovremennaja Algebra, Nauka, Moscow, 1970. English translation: Algebraic Systems, Springer Verlag, Berlin, 1973.
- [7] A. Pilitowska, A. Zamojska-Dzienio, Representation of modals, Demonstratio Math., this volume.
- [8] K. Pszczoła, A. Romanowska, J. D. H. Smith, Duality for some free modes, Discuss. Math. Gen. Algebra Appl. 23 (2003), 45–62.
- [9] A. B. Romanowska, Semi-affine modes and modals, Sci. Math. Jpn. 61 (2005), 159–194.
- [10] A. B. Romanowska, J. D. H. Smith, Modal Theory, Heldermann Verlag, Berlin, 1985.
- [11] A. B. Romanowska, J. D. H. Smith, Differential groupoids, Contributions to General Algebra 7 (1991), 283–290.
- [12] A. B. Romanowska, J. D. H. Smith, Embedding sums of cancellative modes into functorial sums of affine spaces, in Unsolved Problems on Mathematics for the 21st Century, a Tribute to Kiyoshi Iseki’s 80th Birthday (J. M. Abe and S. Tanaka, eds.), IOS Press, Amsterdam, 2001, pp. 127–139.
- [13] A. B. Romanowska, J. D. H. Smith, Modes, World Scientific, Singapore, 2002.
- [14] A. B. Romanowska, A. Zamojska-Dzienio, Embedding semilattice sums of cancellative modes into semimodules, Contributions to General Algebra 13, 295–303.
- [15] A. B. Romanowska, A. Zamojska-Dzienio, Embedding sums of cancellative modes into semimodules, Czechoslovak Math. J. 55 (2005), 975–991.
- [16] D. Stanovskỳ, Idempotent subreducts of semimodules over commutative semirings, Rend. Sem. Mat. Univ. Padova 121 (2009), 33–43.
- [17] M. M. Stronkowski, On free modes, Comment. Math. Univ. Carolin. 47 (2006), 561–568.
- [18] M. M. Stronkowski, Cancellation in entropic algebras, Algebra Universalis 60 (2009), 439–468.
- [19] M. M. Stronkowski, Embedding entropic algebras into semimodules and modules, Internat. J. Algebra Comput. 19 (2009), 1025–1047.
- [20] Á. Szendrei, Identities satisfied by convex linear forms, Algebra Universalis 12 (1981), 103–122.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0033-0016