Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Vol. 43, nr 4 | 841-849
Tytuł artykułu

On Gauss-Weierstrass type integral operators

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we introduce a generalization of Gauss-Weierstrass operators based on q-integers using the q-integral and we call them q-Gauss-Weierstrass integral operators. For these operators, we obtain a convergence property in a weighted function space using Korovkin theory. Then we estimate the rate of convergence of these operators in terms of a weighted modulus of continuity. We also prove optimal global smoothness preservation property of these operators.
Wydawca

Rocznik
Strony
841-849
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
  • Department of Mathematical Siciences the Universty of Memphis Memphis, TN 38152, U.S.A., ganastss@memphis.edu
Bibliografia
  • [1] G. A. Anastassiou, A. Aral, Generalized Picard singular integral, Comput. Math. Appl. 57 (2009), 821–830.
  • [2] A. Aral, On the generalized Picard and Gauss Weierstrass singular integrals, J. Comput. Anal. Appl. 8 (2006), 246–261.
  • [3] A. D. Gadzhiev, Theorems of the type of P. P. Korovkin type theorems, Math. Zametki 20 (5) (1976), 781–786; English Translation, Math Notes 20 (5-6) (1976), 996–998.
  • [4] G. Gasper, M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, Vol 35, Cambridge University Press, Cambridge, UK, 1990.
  • [5] F. H. Jackson, On a q-definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193–203.
  • [6] V. G. Kac, P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, (2002).
  • [7] G. M. Phillips, On generalized Bernstein polynomials, in Numerical Analysis, A. R. Mitchell 75th birthday volume (ed. D. F. Griffiths and G. A. Watson) pp. 263–269 (World Scientific, Singapore, 1999).
  • [8] A. De Sole, V. G. Kac, On integral representations of q-gamma and q-beta functions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16 1 (2005), 11–29.
  • [9] T. H. Koornwinder, q-Special Functions, a tutorial, in: M. Gerstenhaber, J. Stasheff (Eds), Deformation Theory and Quantum Groups with Applications to Mathematical Physics, Contemp. Math. 134 (1992), Amer. Math. Soc. 1992.
  • [10] I. Yüksel, N. Ispir, Weighted approximation by a certain family of summation integraltype operators, Comput. Math. Appl. 52 (2006), 1463–1470.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0031-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.