Czasopismo
2010
|
Vol. 43, nr 4
|
725-738
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
A nearsemilattice is a poset having the upper-bound property. A binary operation — on a poset with the least element 0 is said to be subtraction-like if x ≤ y if and only if x — y = 0 for all x, y. Associated with such an operation is a family of partial operations lp defined by lp(x) := p— x on every initial segment [0, p]; these operations are thought of as local (sectional) complementations of some kind. We study several types of subtraction-like operations, show that each of these operations can be restored in a uniform way from the corresponding local complementations, and state some connections between properties of a (sufficiently strong) subtraction on a nearsemilattice and distributivity of the latter.
Czasopismo
Rocznik
Tom
Strony
725-738
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
- Department of Mathematics University of Latvia Zellu str., 8, Riga, LV-1002, Latvia, jc@lanet.lv
Bibliografia
- [1] C. de Barros, Filters in partially ordered sets, Portugal. Math. 27 (1968), 87–98.
- [2] G. Cattaneo, G. Marino, Brouwer-Zadeh posets and fuzzy systems, in: A. Di Nola and A. Ventre (eds.), Proc. of the 1st Napoli meeting on Mathematics of fuzzy set theory, (Napoli, June 1984), 34–58.
- [3] G. Cattaneo, R. Guntini, S. Pulmanov , Pre-BZ and degenerate BZ-posets: Applications to fuzzy sets and unsharp quantum theories, Found. Phys. 30 (2000), 1765–1799.
- [4] J. Cirulis, Subtractive nearsemilattices, Proc. Latvian Acad. Sci. 52B (1998), 228–233.
- [5] J. Cirulis, Hilbert algebras as implicative partial lattices, Centr. European J. Math. 5 (2007), 264–279.
- [6] J. Cirulis, Implication in sectionally pseudocomplemented posets, Acta Sci. Math. (Szeged) 74 (2008), 477–479.
- [7] W. H. Cornish, 3-permutability and quasicommutative BCK-algebras, Math. Japon. 25 (1980), 427–496.
- [8] W. H. Cornish, The free implicative BCK-extension of a distributive nearlattice, Math. Japon. 27 (1982), 279–286.
- [9] W. H. Cornish, R. C. Hickman, Weakly distributive semilattices, Acta Math. Acad. Sci. Hung. 32 (1978), 5–16.
- [10] H. B. Curry, Foundations of Mathematical Logic, McGraw-Hill Publ. Co., New York, San Francisco, Toronto, London, 1973.
- [11] B. A. Davey, H. A. Priestley, Introduction to Lattices and Orders, Cambr. Univ. Press, 2002.
- [12] J. Duda, Arithmeticality at 0, Czechoslovak Math. J. 37 (1987), 197–206.
- [13] M. Ern , Prime decompositions and pseudocomplementation, Contrib. Gen. Algebra 17 (2006), 83–104.
- [14] G. Gäzer, General Lattice Theory, Academie–Verlag, Berlin, 1978.
- [15] L. Henkin, An algebraic characterizations of quantifiers, Fund. Math. 37 (1950), 63–74.
- [16] R. C. Hickman, Join algebras, Comm. Algebra 8(17) (1980), 1653–1685.
- [17] T. Katriňák Notes on Stone lattices I, Mat. Fiz. Časopis 16 (1966), 128–142.
- [18] T. Katriňák, Pseudokomplementäre Halbverbande, Mat. Časopis 18 (1968), 121–143.
- [19] T. Katriňák, Bemerkung über pseudocomplementären halbgeordneten Mengen, Acta Fac. Rerum Natur. Univ. Comenianae, Math. 19 (1968), 181–185.
- [20] F. Kôpka, F. Chovanec, D-posets, Math. Slovaca 44 (1994), 21–34.
- [21] A. S. A Noor, M. D. B. Rahman, Sectionally semicomplemented distributive nearlattices,Southeast Asian Bull. Math. 26 (2002), 603–609.
- [22] Y. S. Pawar, Implicative posets, Bull. Calcutta Math. Soc. 85 (1993), 381–384.
- [23] Y. S. Pawar, V. B. Dhamke, O-distributive posets, Indian J. Pure Appl. Math. 20 (1989), 804–811.
- [24] H. Rasiowa, An Algebraic Approach to Non-classical Logics, PWN and North-HollandPubl. Co., Warszawa, Amsterdam, London (1974).
- [25] T. Traczyk, On the variety of bounded commutative BCK-algebras, Math. Japon. 24 (1979), 283–292.
- [26] A. Ursini, On subtractive varieties, I, Algebra Univers. 31 (1994), 204–222.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0031-0001