Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | Vol. 42, nr 1 | 131-141
Tytuł artykułu

Some random fixed point theorems for random asymtotically regular operators

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
Wydawca

Rocznik
Strony
131-141
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Department of Mathematics King Mongut's University of Technology Thonburi Bangkok 10140, Thailand, poom.kum@kmutt.ac.th
Bibliografia
  • [1] A.T. Bharucha-Reid, Fixed point theorem in proobabilistic analysis, Bull. Amer. Math. Soc. 82 (1976), 641-645.
  • [2] I. Beg, N. Shahzad, Random approximations and random fixed point theorems, J. Appl. Math. Stoch. Anal. 7, 2 (1994), 145-150.
  • [3] E. Csaini, E. Maluta, Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure, Nonlinear Anal. 9 (1985), 103-108.
  • [4] T. Domínguez Benavides, Fixed point theorems for uniformly Lipschitziane mappings and asymptotically regular mappings, Nonlinear Anal. 32 No. 1 (1998), 15-27.
  • [5] T. Domínguez Benavides, G. Lopez Acedo, H.-K. Xu, Random fixed point of set-valued operator, Proc. Amer. Math. Soc. 124 (1996), 838-838.
  • [6] T. Domínguez Benavides, G. Lopez Acedo, H.-K. Xu, Weak uniform normal structure and iterative fixed points of nonexpansive mappings, Colloq. Math. 67 (1995), 17-23.
  • [7] T. Domínguez Benavides, H.-K. Xu, A new geometrical coefficient for Banach spaces and its applications in fixed point theory, Nonlinear Anal. 25 No. 3 (1995), 311-325.
  • [8] K. Goebel, W. A. Kirk, Topic in Metric Fixed Point Theorem, Cambridge University Press, Cambridge 1990.
  • [9] S. Itoh, Random fixed point theorem for a multivalued contraction mapping, Pacific J. Math. 68 (1977), 85-90.
  • [10] P. Lorenzo Ramírez, Random fixed point of uniformly Lipschitzian mappings, Nonlinear Anal. 57 (2004), 23-34.
  • [11] N. Shahzad, S. Latif, Random fixed points for several classes of 1-ball-contractive and 1-set-contractive random maps, J. Math. Anal. Appl. 237 (1999), 83-92.
  • [12] K.-K. Tan, X. Z. Yuan, Some random fixed point theorem, in: K.-K. Tan (Ed.), Fixed Point Theory and Applications, World Sci., Singapore, (1992), 334-345.
  • [13] D.-H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optimization 15 (1977), 859-903.
  • [14] H. K. Xu, Random fixed point theorems for nonlinear uniform Lipschitzian mappings, Nonlinear Anal. 26 No. 7 (1996), 1301-1311.
  • [15] S. Reich, Fixed point in locally convex spaces, Math. Z. 125 (1972), 17-31.
  • [16] X. Yuan, J. Yu, Random fixed point theorems for nonself mappings, Nonlinear Anal. 26 No. 6 (1996), 1097-1102.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0051-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.