Warianty tytułu
Języki publikacji
Abstrakty
This paper, resulting from two summer programs of Research Experience for Undergraduates, examines the congruence classes of binomial coefficients to a prime square modulus as given by a fractal generation process for lattice path counts. The process depends on the isomorphism of partial semigroup structures associated with each iteration. We also consider integrality properties of certain critical coefficients that arise in the generation process. Generalizing the application of these coefficients to arbitrary arguments, instead of just to the prime arguments appearing in their original function, it transpires that integrality of the coefficients is indicative of the primality of the argument.
Czasopismo
Rocznik
Tom
Strony
23-39
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
autor
autor
autor
autor
- Department of Mathematics Iowa State University Ames, Iowa 50011-2064, USA, dddoan@iastate.edu
Bibliografia
- [1] B. A. Bondarenko, Generalized Triangles and Pyramids of Pascal (Russian), Uzbek Academy of Sciences, Tashkent, 1990.
- [2] P. Burmeister, A Model Theoretic Oriented Approach to Partial Algebras, Akademie-Verlag, Berlin, 1986.
- [3] F. v. Haeseler, H.-O. Peitgen, G. Skorder, Pascal’s triangle, dynamical systems and attractors, Ergodic Th. and Dynamical Systems, 12 (1992), 479-486.
- [4] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1968.
- [5] E. E. Kummer, Über Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93-146.
- [6] H.-O. Peitgen, H. Jürgens, D. Saupe, Fractals for the Classroom, Part II, Springer, New York, NY, 1992.
- [7] A. B. Romanowska, J. D. H. Smith, Modes, World Scientific, River Edge, NJ, 2002.
- [8] M. Sved, The geometry of the binomial array modulo p2 and p3, Discrete Math. 92 (1991), 395-416.
- [9] M. Sved, J. Pitman, Divisibility of binomials by prime powers, Ars Combinatoria 26 (1988), 197-222.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0051-0002