Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 41, nr 3 | 661-676
Tytuł artykułu

Spectra of the operator of the first difference in salpha, s)/alpha and lp (alpha) (1

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we deal with the spectrum of the operator of the first difference A considered as an operator from E to itself where E is one of the sets [...].We apply these results to characterize matrix transformations mapping in E [...] or N. This paper generalizes some results given in [8] and [3].
Wydawca

Rocznik
Strony
661-676
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
Bibliografia
  • [1] A. F. Andersen, Summation of nonintegral order, Mat. Tidsskr. B. (1946), 33-52.
  • [2] B. Altay, F. Basar, On the fine spectrum of the difference operator on c0 and c, Inform. Sci. 168 (2004), 217-224.
  • [3] A. M. Akhmedov, F. Basar, The fine spectra of the difference operator ∆ over the sequence space lp, (1≤p <∞), Inform. Sci. (2004).
  • [4] R. Colak, M. Et, On some generalized difference spaces and related matrix transformations, Hokkaido Math. J. 2 (1997), 483-492.
  • [5] S. Goldberg, Unbounded Linear Operators, Dover Publications Inc. New York 1985.
  • [6] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24 (2) (1981), 19-176.
  • [7] I. J. Maddox, Infinite Matrices of Operators, Springer-Verlag, Berlin, Heidelberg and New York, 1980.
  • [8] B. de Malafosse, Properties of some sets of sequences and application to the spaces of bounded difference sequences of order μ, Hokkaido Math. J. 31 (2002), 283 -299.
  • [9] B. de Malafosse, On some BK space, Internat. J. Math. and Math. Sc. 28 (2003), 1783-1801.
  • [10] B. de Malafosse, Sum and product of certain BK spaces and matrix transformations between these spaces, Acta Math. Hungarica 104 (3), (2004) 241-263.
  • [11] B. de Malafosse, On the Banach algebra B(lp(α)), Internat. J. Math. Sci. and Math. Sc. 60 (2004) 3187-3203.
  • [12] B. de Malafosse, Linear operators mapping in new sequence spaces, Soochow J. Math. 31 No 2 (2005), 403-427.
  • [13] B. de Malafosse, The Banach algebra B(X), where X is a BK space and applications, Vesnik Math. J. 57 (2005), 41-60.
  • [14] B. de Malafosse, E. Malkowsky, Sequence spaces and inverse of an infinite matrix, Rend. Circ. Mat. Palermo Serie II, 51 (2002), 277-294.
  • [15] E. Malkowsky, Recent results in the theory of matrix transformations in sequence spaces, Vesnik Math. J. 49 (1997), 187-196.
  • [16] E. Malkowsky, V. Rakočević, An introduction into the theory of sequence spaces and measure of noncompactness, Zb. Rad. Mat. Inst. SANU 9 (17) (2000), 143-243.
  • [17] E. Malkowsky, V. Rakočević, On matrix domains of triangles, Under review. To appear in Applied Math. and Computation (2007).
  • [18] B. E. Rhoades, The fine spectra of some weighted mean operators in B(lp), Integral Equat. Operator Theory 12 (1989), 82-98.
  • [19] B. E. Rhoades, The spectra of weighted mean operators on bv0, J. Austral. Math. Soc. (Series A) 52 (1992), 242-250.
  • [20] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies 85, 1984.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0049-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.