Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 41, nr 3 | 531-541
Tytuł artykułu

Unified elliptic-type integrals and asymptotic formulas

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The object of the present paper is to consider a unified and extended form of certain families of elliptic-type integrals, which have been discussed in number of earlier works on the subject due to their importance and applications in problems arising in radiation physics and nuclear technology. The results obtained are of general character and include the investigations carried out by several authors. We obtain asymptotic formulas for the unified elliptic-type integrals.
Wydawca

Rocznik
Strony
531-541
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
  • Department of Mathematics University of Rajasthan Jaipur, Rajasthan, India
Bibliografia
  • [1] J. D. Evans, J. H. Hubbell and V. D. Evans, Exact series solution to the Epstein-Hubbell generalized elliptic-type integral using complex variable residue theory, Appl. Math. Comp. 53 (1993), 173-189.
  • [2] E. L. Kaplan, Multiple elliptic integrals, J. Math. Phys. 29 (1950), 69-75.
  • [3] J. H. Hubbell, R. L. Bach, R. J. Herbold, Radiation field from a circular disk source, J. Res. N.B.S. 65 (1961), 249-264.
  • [4] M. J. Berger, J. C. Lamkin, Sample calculation of gamma ray penetration into shelters, Contribution of sky shine and roof contamination, J. Res. N.B.S. 60 (1958),109-116.
  • [5] S. L. Kalla, Results on generalized elliptic-type integrals, Mathematical Structure Computational Mathematics - Mathematical Modelling (Edited by Bl. Sendov), Special Vol., pp. 216-219, Bulg. Acad. Sci., (1984).
  • [6] S. L. Kalla, The Hubbell rectangular source integral and its generalizations, Radiat. Phys. Chem., 41 (1993), 775-781.
  • [7] S. L. Kalla, S. Conde, J. H. Hubbell, Some results on generalized elliptic-type integrals, Appl. Anal. 22 (1986), 273-287.
  • [8] S. L. Kalla, B. Al-Saqabi, On a generalized elliptic-type integral, Rev. Bra. Fis. 16 (1986), 145-156.
  • [9] R. K. Saxena, S. L. Kalla, J. H. Hubbell, Asymptotic expansion of a unified Elliptic-type integrals, Math. Balkanica, 15 (2001), 387-396.
  • [10] S. L. Kalla, C. Leubner, J. H. Hubbell, Further results on generalized elliptic-type integrals, Appl. Anal. 25 (1987), 269-274.
  • [11] H. M. Srivastava, S. Bromberg, Some families of generalized elliptic-type integrals, Math. Comput. Modelling 21 (3) (1995), 29-38.
  • [12] M. L. Glasser, S. L. Kalla, Recursion relations for a class of generalized elliptic-type integrals, Rev. Tec. Ing. Univ. Zulia 12 (1989), 47-50.
  • [13] H. M. Srivastava, R. N. Siddiqi, A unified presentation of certain families of elliptic-type integrals related to radiation field problems, Radiat. Phys. Chem. 46 (1995), 303-315.
  • [14] B. N. Al-Saqabi, A generalization of elliptic-type integrals, Hadronic J. 10 (1987), 331-337.
  • [15] J. Matera, L. Galue, S. L. Kalla, Asymptotic expansions for some elliptic-type integrals, Raj. Acad. Phy. Sci. 1 (2) (2002), 71-82.
  • [16] R. N. Siddiqi, On a class of generalized elliptic-type integrals, Rev. Brasileira Fis. 19 (1989), 137-147.
  • [17] S. L. Kalla, V. K. Tuan, Asymptotic formulas for generalized Elliptic-type integrals, Comput. Math. Appl., 32 (1996), 49-55.
  • [18] A. Al-Zamel, V. K. Tuan, S. L. Kalla, Generalized Elliptic-type integrals and asymptotic formulas, Appl. Math. Comput., 114 (2000), 13-25.
  • [19] R. K. Saxena, S. L. Kalla, A new method for evaluating Epstein-Hubbell generalized elliptic-type integrals, Int. J. Appl. Math. 2 (2000), 732-742.
  • [20] R. K. Saxena, M. A. Pathan, Asymptotic formulas for unified Elliptic-type integrals, Demonstratio Math. 36 (3) (2003), 579-589.
  • [21] L. F. Epstein, J. H. Hubbell, Evaluation of a generalized elliptic-type integral, J. Res. N.B.S. 67 (1963), 1-17.
  • [22] A. M. Mathai, R. K. Saxena, The H-Function with Application in Statistics and other Disciplines, Halsted Press, New York, (1978).
  • [23] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover, New York, (1972).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0049-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.