Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 41, nr 2 | 353-370
Tytuł artykułu

Some properties of a subclass of uniformly convex functions with negative coefficients

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to obtain coefficient estimates, distortion theorem, extreme points and radii of close - to - convexity, starlikeness and convexity for functions belonging to the subclass TSlambda (n,alpha, beta) of uniformly convex functions with negative coefficients. We also derive many results for the modified Hadamard products of functions belonging to the class TSlambda(n,alpha, beta), and obtain several interesting distortion theorems for certain fractional operators of functions in this class. Finally, we consider integral operators associated with functions in this class.
Wydawca

Rocznik
Strony
353-370
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
autor
  • Department of Mathematics Faculty of Science Mansoura University, Mansoura 35516, Egypt, mkaouf127@yahoo.com
Bibliografia
  • [1] F. AL-Oboudi, On univalent functions defined by a generalized Sālāgean operator, Internat. J. Math. Math. Sci. 27 (2004), 1429-1436.
  • [2] R. Bharati, R. Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamakang J. Math. 28 (1997), 17-32.
  • [3] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), 87-92.
  • [4] A. W. Goodman, On a uniformly starlike functions, J. Math. Anal. Appl. 155 (1991), 364-370.
  • [5] S. Kanas and A. Wisniowska, Conic regions and k-uniformly convexity, J. Comput. Appl. Math. 104 (1999), 327-336.
  • [6] S. Kanas and A. Wisniowska, Conic regions and starlike functions, Rev. Roum. Math. Pures Appl. 45 (2000), no. 4, 647-657.
  • [7] W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math. 57(1992), 165-175.
  • [8] S. Owa, On the distortion theorems. I, Kyungpook Math. J. 18 (1978), 53-59.
  • [9] S. Owa, M. Saigo and H. Srivastava, Some characterization theorem for starlike and convex functions involving a certain fractional integral operator, J. Math. Anal. Appl. 140 (1981), 419-426.
  • [10] F. Ronning, On starlike functions associated with the parabolic regions, Ann. Univ. Marie-Curie Skłodowska, Sect. A 45 (1991), 117-122.
  • [11] F. Ronning, Uniformly convex functions and corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), 189-196
  • [12] T. Rosy and G. Murugusundaramoorthy, Fractional calculus and their applications to certain subclass of uniformly convex functions, Far East J. Math. Sci. (FJMS) 115 (2004), no. 2, 231-242.
  • [13] G. Salagean, Subclasses of univalent functions, Lect. Notes in Math. (Springer-Verlag), 1013 (1983), 362-372,
  • [14] A. Schild and H. Silverman, Convolutions of unnialent functions with negative coefficients, Ann. Univ. Mariae-Curie Skłodowska Sect. A 29 (1975), 99-107,
  • [15] H. M. Srivastava and S. Owa (Editors), Univalent Functions, Practional Calculus and Their Applications, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989.
  • [16] H. M. Srivastava, M. Saigo and S. Owa, A class of distortion theorems involving certain operators of fractional calculus, J. Math. Anal. Appl. 131 (1988), 412-420.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0048-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.