Czasopismo
2007
|
Vol. 40, nr 1
|
115-124
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Using the properties of the Henstock–Kurzweil integral and corresponding theorems, we prove the existence theorem for the equation x(m)(t) = f(t, x) in a Banach space, where f is HL integrable and satis.es certain conditions. Our fundamental tool is the measure of noncompactness developed by Kuratowski and Hausdorff.
Czasopismo
Rocznik
Tom
Strony
115-124
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Faculty of Mathematics and Computer Science Adam Mickiewicz University Umultowska 87 61-614 Poznań, Poland, anetas@amu.edu.pl
Bibliografia
- [1] A. Ambrosetti, Un teorema di esistenza por le equazioni differenziali negli spazi di Banach, Rend. Sem. Univ. Padova 39 (1967), 349–360.
- [2] J. Banaś, K. Goebel, Measures of Noncompactness in Banach spaces, Lecture Notes in Pure and Appl. Math., Mercel Dekker 60 (1980), New York and Basel.
- [3] S. S. Cao, The Henstock integral for Banach valued functions, SEA Bull. Math. 16 (1992), 36–40.
- [4] T. S. Chew, On Kurzweil generalized ordinary differential equations, J. Differential Equations 76 (1988), 286–293.
- [5] T.S Chew, F. Flordeliza, On x' = f(t, x) and Henstock-Kurzweil integrals, Differential and Integral Equations 4 (1991), 861–868.
- [6] R.A. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock, Providence, Rhode Island 1994.
- [7] R. Henstock, The General Theory of Integration, Oxford Mathematical Monographs, Clarendon Press, Oxford, (1991).
- [8] I. Kubiaczyk, A. Sikorska, Differential equations in Banach spaces and Henstock-Kurzweil integrals, Disc. Math. Diff. Inclusions 19 (1999), 35–43.
- [9] J. Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter, Czech. Math. J. (1957), 642–659.
- [10] R. H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Robert E. Krieger Publ. Co., Florida, 1987.
- [11] H. Monch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 4 (1980), 985–999.
- [12] P.Y. Lee, Lanzhou Lectures on Henstock Integration, World Scientific, Singapore, 1989.
- [13] A. Sikorska-Nowak, Retarded functional differential equations in Banach spaces and Henstock-Kurzweil integrals, Demonstratio Math. 35 (2002), 49–60.
- [14] A. P. Solodov, On conditions of differentiability almost everywhere for absolutely continuous Banach-valued function, Moscow Univ. Math. Bull. 54 (1999), 29–32.
- [15] S. Szufla, On the differential equation x(m) = f(t, x) in Banach spaces, Func. Ekv. 41 (1998), 101–105.
- [16] G.Ye, P. Y. Lee and C. Wu, Convergence theorems of the Denjoy-Bochner, Denjoy-Pettis and Denjoy-Dunford integrals, SEA Bull. Math. 23 (1999), 135–140.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0033-0013