Czasopismo
2007
|
Vol. 40, nr 1
|
77-84
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Making use of the Carlson-Schaer linear operator, some subclasses of analytic functions are studied. Some relations including various linear operators are given.
Czasopismo
Rocznik
Tom
Strony
77-84
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
- Institute of Mathematics University of Rzeszów ul. Rejtana 16A 35-310 Rzeszów, Poland, jdziok@univ.rzeszow.pl
Bibliografia
- [1] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429–446.
- [2] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), 737–745.
- [3] J. Dziok, Classes of functions defined by certain differential-integral operator, J. Comp. Appl. Math. 105 (1999), 245–255.
- [4] J. Dziok, Applications of the Jack Lemma, Acta Math. Hungar. 105 (2004), 93–102.
- [5] J. Dziok and H. Irmak, Certain operators and inequalities and their applications to meromorphically multivalent functions, Demonstratio Math. 36 (2003), 839–846.
- [6] J. Dziok, R. K. Raina and H. M. Srivastava, Some classes of analytic functions associated with operators on Hilbert space involving Wright's generalized hypergeometric function, Proc. of the Jangieon Math. Soc. 7 (2004), 43–55.
- [7] J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform. Spec. Funct. 14 (2003), 7–18.
- [8] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), 1–13.
- [9] P.J. Eenigenburg, S. S. Miller, P. T. Mocanu and O. M. Reade, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978), 289–305.
- [10] I. S. Jack, Functions starlike and convex of order ?, J. London Math. Soc. 3 (1971), 469–474.
- [11] Y. C. Kim and H. M. Srivastava, Fractional integral and other linear operators associated with the Gaussian hypergeometric function, Complex Variables Theory Appl. 34 (1997), 293–312.
- [12] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755–758.
- [13] A. E. Livings ton, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 17 (1966), 352–357.
- [14] S. S. Miller and P. T. Mocanu, On some classes of first differential subordinations, Michigan Math. J. 32 (1985), 185–195.
- [15] S. Owa, On the distortion theorems. I, Kyungpook Math. J. 18 (1978), 53–59.
- [16] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math Soc. 49 (1975), 109–115.
- [17] H. M. Srivastava and S. Owa, An application of the fractional derivative, Math. Japon. 29 (1984), 383–389.
- [18] H. M. Srivastava and S. Owa, Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators, and certain subclasses of analytic functions, Nagoya Math. J. 106 (1987), 1–28.
- [19] H. M. Srivastava and S. Owa (Editors), Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane, and Toronto, 1989.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0033-0009