Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | Vol. 40, nr 1 | 51-64
Tytuł artykułu

On some new inequalities of Hermite-Hadamard-Fejer type involving convex functions

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we establish some inequalities of Hermite-Hadamard-Fejér type for m-convex functions and s-convex functions.
Wydawca

Rocznik
Strony
51-64
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
autor
autor
Bibliografia
  • [1] H. Alzer, A note on Hadamard's inequalities, C.R. Math. Rep. Acad. Sci. Canada, 11 (1989), 255–258.
  • [2] J. L. Brenner and H. Alzer, Integral inequalities for concave functions with applications to special functions, Proc. Roy. Soc. Edinburgh A 118 (1991), 173–192.
  • [3] S. S. Dragomir, Two refinements of Hadamard's inequality, Coll. of Sci. Dep. of the Fac. of Sci. Kragujevac, 11 (1990), 23–26.
  • [4] S. S. Dragomir, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl. 167 (1992), 49–56.
  • [5] S. S. Dragomir, On Hadamard's inequalities for convex functions, Mat. Balkanica 6 (1992), 215–222.
  • [6] S. S. Dragomir, On Some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math. 33 (1) (2002), 55–65.
  • [7] S. S. Dragomir and C. Buse, Refinements of Hadamard's inequality for multiple integrals, Utilitas Mathematica 47 (1995), 193–198.
  • [8] S. S. Dragomir and S. Fitzpatrick, S-Orlicz convex functions in linear spaces and Jensen's discrete inequality, J. Math. Anal. Appl. 210 (1997), 419–439.
  • [9] S. S. Dragomir and S. Fitzpatrick, The Hadamard's inequality for s-convex function in the first sense, Demonstratio Math. 31 (3) (1998), 633–642.
  • [10] S. S. Dragomir and S. Fitzpatrick, The Hadamard's inequalitiy for s-convex functions in the second sense, Demonstratio Math. 32(4) (1999), 687–696.
  • [11] S. S. Dragomir, J. Pečarić and J. E. Sandor, A note on the Jensen-Hadamard inequality, Anal. Num. Theor. Approx. 19 (1990), 29–34.
  • [12] S. S. Dragomir, J. E. Pečarić and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math. 21 (1995), 335–341.
  • [13] S. S. Dragomir and G. H. Toader, Some inequalities for m-convex functions, Studia Univ. Babes-Bolyai, Math. 38(1) (1993), 21–28.
  • [14] L. Fejer, Über die Fourierreihen, II, Math. Naturwiss, Anz. Ungar. Akad. Wiss., 24 (1906), 369–390. (In Hungarian).
  • [15] A. M. Fink, A best possible Hadamard inequality, Math. Ineq. & Appl. 2 (1998), 223–230.
  • [16] A. M. Fink, Hadamard inequalities for logarithmic concave functions, Math. Comput. Modelling 32 (2000), no. 5-6, 625–629.
  • [17] H. Hudzik and Maligranda, Some remarks on s-convex functions, Aequations Math. 48 (1994), 100–111.
  • [18] G. H. Toader, Some generalizations of the convexity, Proc. Colloq. Approx. Optim, Cluj-Napoca (Romania), 1984, 329–338.
  • [19] G.-S. Yang and M.-C. Hong, A note on Hadamard's inequality, Tamkang J. Math., 28 (1) (1997), 33–37.
  • [20] G.-S. Yang and K.-L. Tseng, On certain integral inequalities related to Hermite-Hadamard inequalities, J. Math. Anal. Appl. 239 (1999), 180–187.
  • [21] G.-S. Yang and K.-L. Tseng, Inequalities of Hadamard's type for Lipschitizian mappings, J. Math. Anal. Appl. 260 (2001), 230–238.
  • [22] G.-S. Yang and K.-L. Tseng, On certain multiple integral inequalities related to Hermite-Hadamard inequality, Utilitas Mathematica 62 (2002), 131–142.
  • [23] G.-S. Yang and C.-S.Wang, Some refinements of Hadamard's inequalities, Tamkang J. Math., 28(2) (1997), 87–92.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0033-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.