Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 39, nr 2 | 377-388
Tytuł artykułu

About some linear and positive operators defined by infinite sum

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In [13], we study a class of linear and positive operators defined by finite sum. In this paper we demonstrate general properties for a class of linear positive operators denned by infinite sum. By particularization, we obtain statements, the convergence and the evaluation for the rate of convergence in therm of the first modulus of smoothness for the Mirakjan-Favard-Szasz operators, Baskakov operators and Mayer-Konig and Zeiler operators. We don't study the convergence of these operators with the well known theorem of Bohman-Korowkin.
Wydawca

Rocznik
Strony
377-388
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
Bibliografia
  • [1] O. Agratini, Aproximare prin operatori liniari , Presa Universitară Clujeană Cluj-Napoca, 2000 (Romanian).
  • [2] V. A. Baskakov, An example of a sequence of linear positiv operators in the space of continuous functions, Dokl. Acad. Nauk, SSSR, 113 (1957), 249-251.
  • [3] M. Becker, R. J. Nessel, A global approximation theorem for Meyer-Köig and Zeller operators, Math. Zeitschr., 160 (1978), 195-206.
  • [4] E. W. Cheney, A. Sharma, Bernstein power series, Canadian J. Math. 16 (1964), 2, 241-252.
  • [5] Z. Ditzian, V. Totik, Moduli of Smoothness, Springer Verlag, Berlin, 1987
  • [6] J. Favard, Sur les multiplicateurs d'interpolation, J.Math. Pures Appl. 23(9) (1944), 219-247.
  • [7] G. G. Lorent z, Bernstein Polynomials, University of Toronto Press, Toronto, 1953.
  • [8] G. G. Lorent z, Approximation of Functions, Holt, Rinehart and Winston, New York, 1966.
  • [9] W. Meyer -König, K. Zeller, Bernsteinsche Potenzreihen, Studia Math. 19 (1960), 89-94.
  • [10] G. M. Mirakjan, Approximation of continuous functions with the aid of polynomials, Dokl. Acad. Nauk SSSR, 31 (1941), 201-205 (Russian).
  • [11] M. W. Müller, Die Folge der Gammaoperatoren, Dissertation, Stuttgart, 1967.
  • [12] O. T. Pop, About a class of linear and positive operators, Carpathian J. Math. 21 (2005), no. 1-2, 99-108.
  • [13] O. T. Pop, The generalization of Voronovskaja's theorem for a class of linear and positive operators, Rev. Anal. Num. Th´eor. Approx. 34 (2005), no. 1, 79-91.
  • [14] D. D. Stancu, Gh. Coman, O. Agrat ini, R. Trîmbiţaş, Analiză numerică ¸şi teoria aproximării , I, Presa Universitară Clujeană, Cluj-Napoca, 2001 (Romanian).
  • [15] O. Szász, Generalization of S. N. Bernstein's polynomials to the infinite interval , J. Research, National Bureau of Standards 45 (1950), 239-245.
  • [16] E. Voronovskaja, D´etermination de la forme asymtotique d'approximation des functions par les polynôme de Bernstein, C. R. Acad. Sci. URSS (1932), 79-85.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0022-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.