Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 39, nr 2 | 291-298
Tytuł artykułu

Identities with products of (alpha, beta)-derivations on prime rings

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main purpose of this paper is to prove the following result. Let R be a noncommutative prime ring of characteristic different from two and let D and G = 0 be (\alpha, beta)-derivations of R into itself such that G commutes with alpha and beta. If [D{x), G(x)] = 0 holds for all x is an eleemnt of R then D = lambdaG where lambda is an element from the extended centroid of R.
Wydawca

Rocznik
Strony
291-298
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
Bibliografia
  • [1] K. I. Beidar, W. S. Martindale III, A. V. Mikhalev, Rings with Generalized Identities, Marcel Dekker, Inc. New York 1996.
  • [2] M. Bresar, J. Vukman, Orthogonal derivations and an extension of a theorem of Posner, Radovi Mat. Vol. 5 (1989), 237-246.
  • [3] M. Bresar, J. Vukman, Jordan (?, ?)-derivations, Glasnik Mat. 26 (1991), 13-17.
  • [4] M. Bresar, On the composition of (?, ß)-derivations of rings, and an application to von Neumann algebras, Acta Sci. Math. (1992), 369-376.
  • [5] J. C. Chang, ?-derivations with invertible values, Bull. Inst. Math. Acad. Sinica, Vol. 13 (1985), 323-333.
  • [6] J. C. Chang, On fixed power central (?, ß)-derivations, Bull. Inst. Math. Acad. Sinica, Vol. 15 (1987), 163-178.
  • [7] J. C. Chang, A note on (?, ß)-derivations, Chinese J. Math., Vol. 19 (1991), 277-285.
  • [8] J. C. Chang, On (?, ß)-derivations of prime rings, Chinese J. Math. Vol. 22 (1994), 21-30.
  • [9] M. A. Chaudhry, A. B. Thaheem, (?, ß)-derivations on semiprime rings, Intern. Math. J., Vol. 3 (2003), 1033-1042.
  • [10] M. A. Chaudhry, A. B. Thaheem, On (?, ß)-derivations of semiprime rings, Demonstratio Math. Vol. XXXVI, 2 (2003), 283-287.
  • [11] M. A. Chaudhry, A. B. Thaheem, Centralizing mappings and derivations on semiprime rings, Demonstratio Math. Vol. XXXVII, 2 (2004), 285-292.
  • [12] Jin-Chi Chang, (?, )-derivations of prime rings having power central values, Bull. Inst. Math. Acad. Sinica, 23 (1995), 295-303.
  • [13] T. C. Chen, Special identities with (?, ß)-derivations, Riv. Mat. Univ. Parma 5 (1996), 109-119.
  • [14] C. Lanski, Differential identities of prime rings, Kharchenko's theorem and applications, Contemporary Math., 124 (1992), 111-128.
  • [15] A. B. Thaheem, M. S. Samman, A note on ?-derivations on semiprime rings, Demonstratio Math. Vol. XXXIV, 4 (2001), 783-788.
  • [16] J. Vukman, On ?-derivations of prime and semiprime rings, Demonstratio Math., Vol. XXXVIII, 2 (2005), 283-290.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0022-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.