Czasopismo
2005
|
Vol. 38, nr 3
|
689--701
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Let H(Rn) denote the hyperspace of all non-empty compact subsets of Rn. The Hausdorff metric h provides a way to measure distances between two elements of H(Rn) and generates the complete metric space (H(Rn),h)). In this paper, we examine geometric properties of lines in H(Rn), as determined by the Hausdorff metric, and compare and contrast the properties of these lines with Euclidean lines in Rn. Several surprising properties of these objects will be highlighted.
Czasopismo
Rocznik
Tom
Strony
689--701
Opis fizyczny
Bibliogr. 6 poz.
Twórcy
autor
- Truman State University
autor
- Concordia College
autor
- Department of Mathematics, Grand Valley State University, 2307 Mak, Allendale, Mi 49401-9403, USA
Bibliografia
- [1] Ch. Bay and S. Schlicker, The Geometry of 'H(Rn), Available at http.://faculty.gvsu.edu/schlicks/Chris-Report.pdf, August, 2003.
- [2] L. M. Blumenthal, Theory and Applications of Distance Geometry, Oxford University Press, 1953.
- [3] A. Bogdewicz, Some properties of hyperspaces, Demonstratio Math. 33 (2000), 135-149.
- [4] A. Bogdewicz, On affine and metric lines in the space of convex bodies, Rend. Circ. Mat. Palermo, 70 (2002), 57-78.
- [5] D. Braun, J. Mayberry, A. Powers, and S. Schlicker, The Geometry of the Hawdorff Metric, Available at http://faculty.gvsu.edu/schlicks/Hausdorf_paper.pdf, February, 2003.
- [6] L. Montejano, Convexity in the hyperspace of compact convex sets, An. Inst. Math. Univ. Nac. Autonoma Mexico, 26 (1986), 145-159.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0014-0016