Czasopismo
2005
|
Vol. 38, nr 3
|
657-666
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
If A(z) is a function of a complex variable with values in the space B(X) of all bounded linear operators on a Banach space X with each A (z) g-Drazin invertible, we study the conditions under which the g-Drazin inverse A°(z) is holomorphic and finite-meromorphic. Prom our results we recover a theorem of Steinberg on meromorphic families of compact operators.
Czasopismo
Rocznik
Tom
Strony
657-666
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- Department of Mathematics and Statistics, University of Melbourne, Vic 3010, Australia, j.koliha@ms.unimelb.edu.au
autor
- Department of Mathematics and Statistics, University of Melbourne, Vic 3010, Australia, vrakoc@bankerinter.net
Bibliografia
- [1] B. Aupetit and J. Zemanek, Uniformly regular families of commuting operators, J. Funct. Anal. 78 (1988), 24-30.
- [2] H. Bart, Meromorphic Operator Valued Functions, Mathematical Centrum, Amsterdam, 1973.
- [3] H. Bart, Holomorphic relative in verses of operator valued functions, Math. Ann. 208 (1974), 179-194.
- [4] H. Bart and W. Kaballo, Local invertibility of meromorphic operator functions, Proc. Royal Irish Acad. 78A (1978), 37-50.
- [5] H. Bart, M. A. Kaashoek and D. C. Lay, Stability properties of finite meromorphic operator functions I, II, III, Indag. Math. 36 (1974), 217-259.
- [6] H. Bart, M. A. Kaashoek and D. C. Lay, Relative inverses of meromorphic operator functions and associated holomorphic projection functions, Math. Ann. 218 (1975), 199-210.
- [7] S. Caradus, Operators with finite ascent and descent, Pacific J. Math., 18 (1966), 437-449.
- [8] M. P. Drazin, Pseudo-inverse in associative rings nad semigroups, Amer. Math. Monthly 65 (1958), 506-514.
- [9] I. C. Gohberg, On linear operators depending analytically on a parameter, Doklady Akad. Nauk SSSR (N.S.) 78 (1951), 629-632 (Russian).
- [10] J. S. Howland, Analyticity of determinants of operators on a Banach space, Proc. Amer. Math. Soc. 28 (1971), 177-180.
- [11] T. Kato, Perturbation Theory for Linear Operators, 2nd edition, Springer, Berlin, 1980.
- [12] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), 367-381.
- [13] J. J. Koliha and V. Rakočević, Continuity of the Drazin inverse II, Studia Math. 131 (1998), 167-177.
- [14] J. J. Koliha and V. Rakočević, Differentiability of the g-Drazin inverse, Studia Math. 168 (2005), 193-201.
- [15] J. J. Koliha and T. D. Tran, Semistable operators and singularly perturbed differential equations, J. Math. Anal. Appl. 231 (1999), 446-458.
- [16] Z. Słodkowski, Operators with closed ranges in spaces of analytic vector valued functions, J. Funct. Anal. 69 (1986), 155-177.
- [17] S. Steinberg, Meromorphic families of compact operators, Arch. Rat. Mech. Anal. 31 (1968), 372-380.
- [18] G. Ph. A. Thijsse, Decompositions theorems for finite-meromorphic operator functions, Thesis, Vrije Universiteit te Amsterdam, 1978.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0014-0013