Czasopismo
2005
|
Vol. 38, nr 2
|
313--322
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Let f(x) = z+ sum (for n=k+1 to infinity) belong to the class S(1 - b),beta), b=0,, complex and 0 < beta < 1. In this paper, we determine sharp coefficient estimates for functions of the form f(z)t = zt + sum (for n=t+kan zn to infinity), where t is a positive integer. The results obtained generalize the work of many authors.
Czasopismo
Rocznik
Tom
Strony
313--322
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
- Box 102278, Jeddah 21321, Kingdom of Saudi Arabia
autor
- Box 102278, Jeddah 21321, Kingdom of Saudi Arabia, alyamy@hotmail.com
Bibliografia
- [1] M. K. Aouf, Coefficient estimates for a certain class of starlike mappings, Soochow. J. Math 2 (1990), 231-239.
- [2] M. K. Aouf, Coefficient estimates for bounded starlike functions of comples order, Tamkang J. Math. 25 (1994), 113-123.
- [3] M. K. Aouf, S. Owa and M. Obradovic, Certain classes of analytic functions of complex order and type beta, Rend. Mat. 11 (1991), 691-714.
- [4] B. L. Bhatia and S. Rajasekaran, Coefficient estimates for alpha-spiral functions, Bull. Austrl. Math. Soc. 28 (1983), 319-329.
- [5] A. V. Boyd, Coefficient estimates of starlike functions of order α, Proc. Amer. Math. Soc. 17 (1966), 1016-1018.
- [6] R. M. Goel, A subclass of α spiral functions, Publ. Math. Debrecen 23 (1976), 79-84.
- [7] H. S. Gopalakrishna and V. S. Shetiya, Coefficient estimates for spirallike mappings, J. Karnata Univ. Sci. 18 (1973), 297-307.
- [8] O. P. Juneja and M. L. Mogra, On starlike functions of order α and type β, Notices Amer. Mat h. Soc. 22 (1975), A-384, Abstract no. 75T-380.
- [9] P. K. Kulshrestha, Bounded Robertson functions, Rend. Mat. (7) 9 (1976), 137-150.
- [10] R. J. Libera, Univalent α-spiral functions, Canad. J. Math. 19 (1967), 449-456.
- [11] T. H. MacGregor, Coefficient estimates of starlike mapping, Michigan Math. J. 10 (1963), 277-288.
- [12] C. P. McCarty, Starlike functions, Proc. Amer. Math. Soc. 43 (1974), 361-366.
- [13] M. L. Mogra, On coefficient estimates for λ-spirallike and Robertson functions, Rend. Mat. (7) 3 (1983), no. 1, 95-106.
- [14] M. L. Mogra and O. P. Ahuja, On spirallike, functions of order α and type β, Yokohama Math. J. 29 (1981), 145-156.
- [15] M. L. Mogra and O. P. Ahuja, Coefficient estimates for starlike functions, Bull. Austral. Math. Soc. 16 (1977), 415-425.
- [16] M. A. Nasr and M. K. Aouf, Bounded starlike functions of complex order, Proc. Indian Acad. Sci. (Math. Sci.) 92 (1983): 97-102.
- [17] M. A. Nasr and M. K. Aouf, Starlike function of complex order, J. Natur. Sci. Math. 25 (1985), 1-12.
- [18] S. Owa and M. K. Aouf, On coefficient estimates for certain classes of analytic functions of complex order band type beta, J. Fac. Sci. Tech. Kinki Univ. 29 (1993), 5-11.
- [19] S. Rajasekaran and B. L. Bhatia, Coefficient estimates for starlike functions of order α and type β, Indian J. Pure Appl. Math. 10 (1984), 1115-1123.
- [20] R. Singh, On a class of starlike functions, J. Indian Math. Soc. 32 (1968), 208-213.
- [21] R. Singh and V. Singh, On a class of bounded starlike functions, Indian J. Pure Appl. Math. 5 (1974), 733-754.
- [22] R. S. L. Srivastava, Univalent Spiral Functions, Top1cs in Analysis, 327-341 (Lecture Notes in Mathematics, 419, Springer, Berlin, Heidelberg, New York, 1974).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0013-0006