Czasopismo
2005
|
Vol. 38, nr 2
|
277--282
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The purpose of this paper is to prove the following result: Let R be a (m+n + 2)! and 3m2n + 3mn2 + 4m2 + 4n2 +10mn-torsion free semiprime ring with an identity element and let T : R -R be an additive mapping such that 3T(xm+n+1) = T(x)xm+n + xmT(x)xn + xm=nT(x) is fulfilled for all x is an element R and some fixed nonnegative integers m and n, m+n=0. In this case T is a centralizer.
Czasopismo
Rocznik
Tom
Strony
277--282
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
autor
- Department of Mathematics, University of Maribor, PEF, Koroska 160, 2000 Maribor, Slovenia, irena.kosi@uni-mb.si
Bibliografia
- [1] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer., Math. Soc. 104 (1988), 1003-1006.
- [2] M. Brešar and J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc. 3 (1988), 321-322.
- [3] J. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324.
- [4] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.
- [5] J. Vukman, An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolinae 40 (1999), 447-456. ·
- [6] J. Vukman, Centralizers of semiprime rings, Comment. Math. Univ. Carolinae, 42, 2(2001), 237-245.
- [7] J. Vukman and I. Kosi-Ulbl, An equation related to centralizers in semiprime rings, Glasnik Mat. Vol. 38 (58) (2003), 253-261.
- [8] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolinae 32 (1991), 609-614.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0013-0002