Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | Vol. 37, nr 2 | 485--503
Tytuł artykułu

Measure of regular languages

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper reviews and extends the recent work on signed real measure of regular languages within a unified framework. The language measure provides total ordering of partially ordered sets of sublanguages of a regular language to allow quantitative evaluation of the controlled behavior of deterministic finite state automata under different supervisors. The paper presents a procedure by which performance of different supervisors can be evaluated based on a common quantitative tool. Two algorithms are provided for computation of the language measure and their equivalence is established along with a physical interpretation from the probabilistic perspective.
Wydawca

Rocznik
Strony
485--503
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
  • Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA, azs110@psu.edu
autor
  • Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA, axr2@psu.edu
Bibliografia
  • [1] V. Drobot, Formal Languages and Automata Theory, Computer Science Press, 1989.
  • [2] H. E. Hopcroft, R. Motwani and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, 2nd ed., Addison Wesley, Boston, 2001.
  • [3] J. Fu, A. Ray and C. M. Lagoa, Unconstrained optimal control of regular languages, IEEE Conference on Decision and Control, Las Vegas, Nevada, 2002, pp. 799-804.
  • [4] J. Fu, A. Ray and C. M. Lagoa, Optimal control of regular languages with event disabling cost, American Control Conference, Boulder, Colorado, 2003, pp. 1691-1695.
  • [5] J. C. Martin, Introduction to Languages and the Theory of Computation, 2nd ed., McGraw Hill, Boston, 1997.
  • [6] A. W. Naylor and G. R. Sell, Linear Operator Theory in Engineering and Science, Springer-Verlag, New York, 1982.
  • [7] R. J. Plemmons and A. Berman, Nonnegative Matrices in the Mathematical Sciences, Academic Press, 1979.
  • [8] P. J. Ramdage and W. M. Wonham, Supervisory control of a class of discrete event processes, SIAM J. Control Optim. 25 (1), 1987.
  • [9] A. Ray and S. Phoha, Signed Real measure of regular languages for discrete-event automata, Int. J. Control 76 (18), 1800-1808.
  • [10] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw Hill, New York, 1988.
  • [11] R. Sengupta and S. Lafortune, An optimal control theory for discrete event systems, SIAM J. Control Optim. 36 (2) (1998), 488-541.
  • [12] X. Wang and A. Ray, Signed Real Measure of Regular Languages, American Control Conference, Anchorage, Alaska, 2002, pp. 3937-3942.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0010-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.