Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | Vol. 37, nr 1 | 55--61
Tytuł artykułu

On some free groups, generated by matrices

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
Słowa kluczowe
Wydawca

Rocznik
Strony
55--61
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
  • Institute of Mathematics, Silesian University of Technology, ul. Kaszubska 23, 44-100 Gliwice, Poland, slanina@skrzynka.pl
Bibliografia
  • [1] J. Bamberg, Non-free points for groups generated by a pair of 2x2 matrices, London Math. Soc. (2) 62, (2000), 795 -801.
  • [2] A.F. Beardon, Pell's equation and two generator free Moebius groups, London Math. Soc. (1993), 527-532.
  • [3] J.L. Brenner, Quelques groupes libres de matrices, C. R. Acad. Sci. Paris 241, (1955), 1689-1691.
  • [4] B. Chang, S.A. Jennings, R. Ree, On certain matrices which generate free groups, Canadian J. Math. (1958), 279-284.
  • [5] R.J. Evans, Non-free groups generated by two parabolic matrices, J. Res. Nat. Bur. Standards, vol. 84, no. 2, (1979), 179-180.
  • [6] D.I. Fouxe-Rabinowitch, On a certain representation of a free group, Leningrad State Univ. Annals (Uchennye Zapiski). Math. Ser., 10 (1940), 154-157.
  • [7] A. Grytczuk, M. Wojtowicz, The problem of freeness for Euler monoids and Moebius groups, Semigroup Forum 61 (2000), 277-282.
  • [8] Yu.A. Ignatov, Free and nonfree subgroups of PSL2(C) that are generated by two parabolic elements, Mat. Sb. (N.S.) 106 (148), (1978), 372- 379.
  • [9] Yu.A. Ignatov, Roots of unity as nonfree points of the complex plane, Mat. Zametki 27, (1980) no . 5, 825-827.
  • [10] Yu.A. Ignatov , Rational nonfree points of the complex plane, Tulsk. Gos. Ped. Inst., Tula, ( 1986), 72-80.
  • [11] Yu.A. Ignatov, Rational nonfree points of the complex plane, Tulsk. Gos. Ped . Inst., Tula, (1990), 53-59.
  • [12] Yu.A. lgnatov, Rational nonfree points of the complex plane, part III, Tulsk. Gos. Ped. Inst., Tula, (1995), 78-84.
  • [13] Yu.A. Ignatov, T.N. Gruzdeva, I.A. Sviridova, Free groups of linear-fractional transformations, Tulsk. Gos. Univ. Ser. Mat. Mekh. Inform. 5, (1999), 116-120.
  • [14] M.I. Kabieniuk, Groups generated by two transitive matrices, Kemerovo State University, (1988).
  • [15] R.C. Lyndon, P.E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin-New York, (1977).
  • [16] R.C. Lyndon, J.L. Ullman, Groups generated by two parabolic linear fractional transformations, Canadian J. Math. (1969), 1388-1403.
  • [17] S.W. Lysenkov, Groups generated by two 2x2 matrices, Kemerovo State University, (1983) 27 -31.
  • [18] W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory, Dover Publications, Inc. New York, (1976).
  • [19] M. Newman, A conjecture on a matrix group with tw genetators, J. Res. Nat. Bur. Standards, vol. 78B, no. 2, (1974), 69-70.
  • [20] D.J.S. Robinson, A Course in the Theory of Groups, New York: Springer Verlag, (1996).
  • [21] S. Saks, A. Zygmund, Analytic Functions, PWN Warszawa, (1965).
  • [22] I.N. Sanov, Swojstwo odnowo priedstawlienia swobodnoj grupy, Dokl. Akad. Nauk SSSR 57 (7), Moskwa, (1947), 657-659.
  • [23] A.I. Skuratskii, The problem of the generation of free groups by two unitriangular matrices, Mat. Zametki 24 (1978), 411-414.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0009-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.