Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | Vol. 36, nr 4 | 985--1000
Tytuł artykułu

Uniform structures on hyperspaces and uniform topologies on spaces of multifunctions

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to study uniform and topological structures on spaces of multifunctions. Uniform structures on hyperspaces compatible with the Fell, the Wijsman and the Hausdorff metric topology respectively are studied and the links between them are explored. Topologies induced by the above uniformities on spaces of multifunctions are considered and compared. Also connections between uniform convergence of multifunctions and their equi-semicontinuity are investigated.
Wydawca

Rocznik
Strony
985--1000
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
  • Dipartimento di Matematica e Applicazioni, Università Degli Studi di Napoli, Via Claudio 21, 80125 Napoli, Italy, delprete@cds.unina.it
autor
  • Dipartimento di Matematica e Applicazioni, Università Degli Studi di Napoli, Via Claudio 21, 80125 Napoli, Italy, diiorio@unina.it
autor
  • Academy of Sciences, Institute of Mathematics, Štefánikova 49, 81473, Bratislava, Slovakia, hola@mat.savba.sk
Bibliografia
  • [Be] G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer Academic Publisher, Dordrecht, 1993.
  • [BHN] V. Baláž, Ľ. Holá, T. Neubrunn, Remark on c-continuous multifunctions, Acta Math. Univ. Comen. L-LI (1987), 51-57.
  • [Bo] N. Bourbaki, General Topology, part 1, Addison-Wessley, 1966.
  • [BW] A. Bagh, R. J. B. Wets, Convergence of set valued mappings: equi-outer- semicontinuity, Set-Valued Anal. 4 (1996), 333-360.
  • [DDH] I. Del Prete, M. Di Iorio, Ľ. Holá, Graph convergence of set valued maps and its relationship to other convergences, J. Appi. Anal. 6 (2000), no 2, 213-226.
  • [Fe] J. M. Fell, A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, P.A.M.S. 13, (1962), 472-476.
  • [HL] Ľ. Holá, S. Levi, Decomposition properties of hyperspace topologies, Set-Valued Anal. 5 (1997), no. 4, 309-321.
  • [HP] Ľ. Holá, H. Poppe, Fell topology on the space of functions with closed graph, Rend. Circ. Mat. Palermo (2) 48, (1999), n.3, 419-430.
  • [Ke] J. L. Kelley, General Topology, Princeton, N.Y. 1955.
  • [Ko] S. Kowalczyk, Topological convergence of multivalued maps and topological convergence of graphs, Demonstratio Math. 27, n.l, (1994), 79-87.
  • [LR] Y. F. Lin, D. A. Rose, Ascoli's theorem for spaces of multifunctions, Pacific J. Math. 34 (1970), 741-747.
  • [Mei] R. A. McCoy, Comparison of hyperspace and function space topologies, Quaderni di matematica 3, Dip. Matem. Seconda Università di Napoli (1998).
  • [Mc2] R. A. McCoy, Fell topology and uniform topology on compacta on spaces of multifunction, Rostock. Math. Kolloq. 51 (1997), 127-136.
  • [Mi] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 151-182.
  • [Mo] P. Morales, Non-Hausdorff Ascoli theory, Dissertationes Math. 119 (1974), 1-37.
  • [Pal] B. K. Papadopoulos, Topologies on the set of continuous multif unctions, Math. Japonica 33 No.5 (1988), 769-776.
  • [Pa2] B. K. Papadopoulos, The uniformity of uniform convergence and the compactopen topology on the set of multifunctions, Math. Japonica 34 No. 4 (1989), 629-635.
  • [Sm] R. E. Smithson, Uniform convergence for multifunctions, Pacific J. Math, 39 (1971), 253-259.
  • [SZ] Y. Sonntag, C. Zalinescu, Set convergences: a survey and a classification, Set-Valued Anal. 2 (1994), no. 1-2, 339-356.
  • [Wi] R. Wijsman, Convergence of sequences of convex sets, cones and functions, II, Trans. Amer. Math. Soc. 123 (1966), 32-45.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0008-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.