Czasopismo
2003
|
Vol. 36, nr 4
|
899--913
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
This is the second in a series of papers, extending the theory of Fourier analysis to locally convex spaces of distributions (LCD-spaces). In this paper, LCD-spaces admitting conjugation and multiplier operators on LCD-spaces are discussed. It is also shown that if E is an LCD-space having C∞ as a dense subset, then E*, endowed with the topology of precompact convergence, is an LCD-space having C∞ as a dense subset.
Czasopismo
Rocznik
Tom
Strony
899--913
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
- Department of Mathematics, I. I. T. Roorkee, Roorkee, India - 247667, rpsrpfma@iitr.ernet.in
autor
- Dubai University College, General Education Department, P.O. Box 14143, Dubai, United Arab Emirates UAE, amohammed@duc.ac.ae
Bibliografia
- [1] R. E. Edwards, Fourier Series, Vols. I, II, Springer-Verlag, New York, 1979, 1982.
- [2] L. Narici and E. Beckenstein, Topological Vector Spaces, Marcel Dekker, Inc. New York, 1985.
- [3] M. P. Singh, On Frechet Spaces of Distributions and Multiplier Operators, Ph.D. Thesis, University of Roorkee, Roorkee, 1991.
- [4] R. P. Sinha, Reflexive locally convex spaces of distributions are homogeneous, Bull. Soc. Math. Belg., Ser. B, 44 (1992), No. 1, 83-87.
- [5] R. P. Sinha, Vishnu Kant, On the Banach space of distributions, Bull. Soc. Math. Belg., Ser. B, 41 (1989), No. 3, 295-305.
- [6] R. P. Sinha, A. N. Mohammed, Fourier analysis on locally convex spaces of distributions I, Demonstratio Math. 36 (2003), No 3, 697-709.
- [7] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, Inc., New York, 1978.
- [8] M. Zamansky, Sur l¹ approximation fonctiones continues periodiques, C.R. Acad. Sci., Paris, 228 (1949), MR10, 449; 460-461.
- [9] A. Zygmund, Trigonometric Series, Vols. I and II, Cambridge University Press, New York, 1968.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0008-0015