Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | Vol. 36, nr 1 | 113--122
Tytuł artykułu

Kamenev-type oscillation criteria for hyperbolic delay difference equations

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Some new oscillation criteria and discrete Kamenev-type oscillation criteria for hyperbolic nonlinear delay difference equations are obtained.
Wydawca

Rocznik
Strony
113--122
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
  • Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland, kuba@amu.edu.pl
autor
Bibliografia
  • [1] R. P. Agarwal, Difference Equations and Inequalities, Theory, Methods and Applications, Second Edition, Marcel Dekker, New York, 2000.
  • [2] R. P. Agarwal and P. J. Y. Wong, Advanced Topics in Difference Equations, Kluwer Academic Publishers, Drodrecht, 1997.
  • [3] S. S. Cheng, Invitation to partial difference equations, in: Communications in Difference Equations, Proceedings of the fourth International Conference on Difference Equations, Poznan,Poland, August 27-31, 1998. Gordon and Breach Science Publishers, 91-106.
  • [4] R. Courant, K. Friedrich and H. Lewy, On partial difference equations of mathematical physics, IBMJ. 11 1967, 215.
  • [5] W. G. Kelley and A. C. Peterson, Difference Equations; An Introduction with Applications, Academic Press, New York, 1991.
  • [6] X. P. Li, Partial difference equations used in the study of molecular orbits, Acta Chimica Sinica (in Chinese) 40 (1982), 688-696 .
  • [7] B. Shi, Z. C. Wang and J. S. Yu, Oscillation of nonlinear partial difference equations with delays, Comp. Math. Appl. 32 (1996), 29-39.
  • [8] W. N. Li, Oscillation for solutions of partial differential equations with delays, Demonstratio Math. 29 (2000), 317-332.
  • [9] D. D. Bainov and D. P. Mishev, Oscillation Theory for Neutral Differential Equations with Diviting Arguments, Adam Hilger, New York, 1991.
  • [10] B. T. Cui, Oscillation properties fo the solutions of hyperbolic equqtions with deviating arguments, Demonstratio Math. 29 (1996), 61-68.
  • [11] B. S. Lalli, Y. H. Yu and B. T. Cui, Oscillation of certian partial differential equations with deviating arguments, Bull. Aust. Math. Soc. 46 (1992), 373-380.
  • [12] Y. K. Li, Oscillation of system of hyperbolic differential equations with deviating arguments, Acta. Math. Sinica. 40 (1997), 100-105.
  • [13] D. P. Mishev and D. D. Bainov, Properties of a class of hyperbolic equations of neutral type, Funk. Ekvac. 29 (1986), 213-218.
  • [14] S. H. Saker, Oscillation of hyperbolic equations with deviating arguments, Publ. Math. Debr., in press.
  • [15] P. C. Wang, X. L. Fu and Y. H. Yu, Oscillation of a class of delay hyperbolic equations, J. Math. Res. Exp. 18 (1998), 105-111.
  • [16] P. C. Wang, Forced oscillation of a class on nonlinear delay hyperbolic equations, Math. Slov. 49 (1999), 495-501.
  • [17] P. C. Wang, Oscillation of of a class of delay hyperbolic equations boundary value problem (II), Appl. Math. Comp. 100 (1999), 99-109.
  • [18] B. G. Zhang, Oscillation of delay partial difference equations, Progress in Natural Science 11 (2001), 321-330.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0006-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.