Warianty tytułu
Języki publikacji
Abstrakty
The class of QBBC-algebras was introduced and studied by the authors in ioj. These algebras model properties of the logical connective implication "=>" in which tin- validity of formulas x => y and y => x does not imply the equivalence of x and y. In ihe paper the properties of standard QBCC-algebras derived from qosets are studied.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--10
Opis fizyczny
Bibliogr. 9 poz., rys.
Twórcy
autor
- Department of Algebra and Geometry, Palacký University Olomouc, Tomkova 40, 779 00 Olomouc, Czech Republic, Halas@risc.upol.cz
autor
- Department of Algebra and Geometry, Palacký University Olomouc, Tomkova 40, 779 00 Olomouc, Czech Republic
Bibliografia
- [1] W. J. Blok and D. Pigozzi, Algebraizable logics, Memoirs of the American Math. Soc. No. 396, Providence, Rhode Island 1989.
- [2] W. A. Dudek, The number of subalgebras of finite HCC-algebras, Bull. Inst. Math., Academia Sinica 20(2) (1992), 129-135.
- [3] I. Chajda and R. Halaš, Pre-logics, Math. Slovaca, to appear.
- [4] R. Halaš, BCG-algebras inherited from posets, Multiple Valued Logic, to appear.
- [5] R. Halaš and J. Ort, QBCC-algebras inherited from qosets, submitted.
- [6] Y. Imai and K. Iseki, On axiomatic system of propositional calculi XIV, Proc. Japan Acad. 42 (1966), 19-22.
- [7] Y. Komori, The class of BCC-algebras do not form a variety, Math. Japon. 29 (1984), 391-394.
- [8] A. Wroński, An algebraic motivation for BCK-algebras, Math. Japon. 30 (1985), 183-193.
- [9] A. Wroński BCK-algebras do not form a variety, Math. Japon. 28 (1983), 211-213.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0006-0001