Czasopismo
2002
|
Vol. 35, nr 3
|
645-656
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The notion of 2k-inner product is introduced as a generalization of usual inner product and Q-inner product ([4]-[8]). As a consequence, is denned the notion of 2k-normed space and some properties, e.g. uniformly convexity, Gateaux differentiability and Riesz property of the dual, are given.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
645-656
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- Faculty of Mathematics, University "Al. I. Cuza" of Iaşi, Iaşi 6600, Romania, mcrasm@uaic.ro
autor
- School of Communications and Informatics, Victoria University of Technology, Po Box 14428, MCMC Melbourne, Victoria 8001, Australia, sever@matilda.vu.edu.au
Bibliografia
- [1] D. V. Alekssevsky, S. Marchiafava, Transformations of a quaternionic Kählerian manifold, C. R. Acad. Sci. Paris, Ser. I 320(6) (1995), 703-705.
- [2] D. Amir, Characterizations of Inner Product Spaces, Operator Theory: Advances and Applications 20 (1986), Birkhäuser Verlag.
- [3] Ν. Bourbaki, Topological Vector Spaces-Chapters 1-5, Springer, 1987.
- [4] S. S. Dragomir, Q-normed linear spaces, Proceedings of Romanian Conference on Geometry and Topology, Tirgovişte, April 1986, University of Bucureşti Press, 1988, 69-72.
- [5] S. S. Dragomir, I. Muntean, Linear and continuous functional on complete Q-inner product spaces, Babeş-Bolyai Univ. Sem. Math. Anal. 7 (1987), 59-68.
- [6] S. S. Dragomir, Best approximation in Q-inner-product spaces, Studia Univ. Babeş-Bolyai, Mathematica 34 (1991), 75-80.
- [7] S. S. Dragomir, Representation of continuous linear functionals on complete SQ-inner-product spaces, Analele Universiţări din Timişoara 30 (1992), 241-250.
- [8] S. S. Dragomir, Ν. M. Ionescu, New properties of Q-inner-product spaces, Zb. Rad. (Kragujevac) 14 (1993), 19-24.
- [9] S. S. Dragomir, Smooth normed spaces of (BD)-type, J. Fac. Sci. Univ. Tokyo 39 (1992), 1 - 1 5 .
- [10] A. Misiak, A. Ryż, n-inner product spaces and projections, Mathematica Bohémica 125 (2000), 87-97.
- [11] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Sub-spaces, Publishing House of Romanian Academy & Springer Verlag, 1970.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA1-0044-0020