Czasopismo
2002
|
Vol. 35, nr 3
|
469-475
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
It is well known that the class of Hall triple systems [5], Steiner triple systems in which each triangle generates an affine plane over GF(3), corresponds to the class of commutative Moufang loops of exponent 3 [6]. In this paper, we extend the class of algebras to the class of all commutative loops of exponent 3 satisfying the identity x.(x.y)2=y2, corresponding to the class of all Steiner triple systems. Such a commutative loop of exponent 3 with x . (x o y)2 = y2 is polynomially equivalent to a squag.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
469-475
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
autor
- Mathematics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
Bibliografia
- [1] R. H. Bruck, A Survey of Binary Systems, Springer, Heidelberg 1971.
- [2] B. Ganter, H. Werner, Co-ordinatizing Steiner systems, Ann. Discrete Math. 7 (1980), 3-24.
- [3] G. Grätzer, Universal Algebra, D. vein Nostrand Company, Inc. Princeton, New Jersey, Toronto, London, Melbourne 1968.
- [4] A. J. Guelzow, Representation of finite nilpotent squags, Discrete Math. 154 (1996), 63-76.
- [5] M. Hall, Jr, Automorphisms of Steiner triple systems, IBM J. 5 (1960), 460-472.
- [6] S. Klossek, Kommutative Spiegelungsraume, Mitt. Math. Sem. Univ. Giessen 117 (1975).
- [7] R. W. Quackenbush, Varieties of Steiner loops and Steiner quasigroups, Canadian. J. Math. 28 (1978), 1187-1198.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA1-0044-0004