Czasopismo
2002
|
Vol. 35, nr 1
|
49-60
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, using properties of the Henstock-Kurzweil integral and corresponding theorems, we prove existence theorems for the equation x' = f(t,xt) and inclusion x' F(t,xt) in a Banach space where f is Henstock-Kurzweil integrable and satisfies some additional conditions.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
49-60
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
- Faculty of Mathematics and Computer Science, Adam Mickiewicz University, ul. Matejki 48/49, 60-769 Poznań, Poland, anetas@amu.edu.pl
Bibliografia
- [1] A. Ambrosetti, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Univ. Padova 39 (1967), 349-360.
- [2] Z. Artstein, Topological dynamics of ordinary differential equations and Kurzweil equations, J. Differential Equations 23 (1977), 224-243.
- [3] J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Appl. Math., Mercel Dekker, 60 (1980), New York and Basel.
- [4] S. S. Cao, The Henstock integral for Banach valued functions, SEA Bull Math. 16 (1992), 36-40.
- [5] T. S. Chew, On Kurzweil generalized ordinary differential equations, J. Differential Equations 76 (1988), 286-293.
- [6] T. S. Chew and F. Flovdelija, On x' = f(t,x) and Henstock-Kurzweil integrals, Differential and Integral Equations 4 (1991), 861-868.
- [7] T. S. Chew, W. van Brunt and G. C. Wake, On retarded functional differential equations and Henstock-Kurzweil integrals, Differential and Integral Equations 9 (1996), 569-580.
- [8] M. C. Delfour and S. K. Mitter, Hereditary differential systems with constant delays, I General case, J. Differential Equations 9 (1972), 213-235.
- [9] K. Goebel and W. Rzymowski, An existence theorem for the equations x' = f(t,x) in Banach space, Bull. Acad. Polon. Sci. 7 (1970).
- [10] R. A. Gordon, The Mc Shane integral of Banach-valued functions, III. J. Math. 34 (1990), 557-567.
- [11] R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock, Providence, Rhode Island, 1994.
- [12] J. Hale, Functional Differential Equations, Springer, 1971.
- [13] P. Hartman, Ordinary Differential Equations, New York 1964.
- [14] H. P. Heinz, On the behaviour of measures of noncompactness with respect to differentation and integration of vector-valued functions, Nonlinear Anal. 7 (1983), 1351-1374.
- [15] R. Henstock, The General Theory of Integration, Oxford Mathematical Monographs, Clavendon Press, Oxford, 1991.
- [16] I. Kubiaczyk and A. Sikorska, Differential equations in Banach spaces and Henstock-Kurzweil integrals, Disc. Math. DifF. Inclusions 19 (1999), 35-43.
- [17] N. Kunze, Strongly Generated Banach Spaces and Measures of noncompactnes, Math. Nachr. 191 (1998), 197-214.
- [18] P. Y. Lee, Lanzhou Lectures on Henstock integration, World Scientific 1984.
- [19] H. Monch, Boundary value problems for nonlinear differential equations of second-dorder in Banach spaces, Nonlinear Anal. 4 (1980), 985-999.
- [20] S. Schwabik, Generalized Ordinary Differential Equations, World Scientific, Singapore, 1992.
- [21] A. P. Solodov, On conditions of differentiability almost everywhere for absolutely continuous Banach-valued function, Moscow Univ. Math. Bull. 54 (1999), 29-32.
- [22] S. Szufla and W. Orlicz, On some classes of nonlinear Volterra integral equations in Banach space, Bull. Polon. Sci. Math. 30 (1982), 239-250.
- [23] T. L. Toh and T. S. Chew, On functional differential equation with unbounded delay and Henstock-Kurzweil integrals, New Zealand J. Math. 28 (1999), 111-123.
- [24] G. Ye, P. Y. Lee and C. Wu, Convergence theorems of the D enjoy-Bochner, Denjoy-Pettis and Denjoy-Dunford Integrals, SEA Bull. Math. 23 (1999), 135-140.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA1-0042-0007