Czasopismo
2001
|
Vol. 34, nr 4
|
847-857
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Coincidence and fixed point theorems for a quadruple of maps on an arbitrary set with values in a metric space and with minimal commutavity conditions have been studied. Applications to nonlinear integral equations are also given.
Czasopismo
Rocznik
Tom
Strony
847-857
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
- Departament of Mathematics University of Transkei Umtata 5100, South Africa , mishra@getafix.utr.ac.za
autor
- Department of Mathematics Gurukula Kangari University Hardwar 249404, India
Bibliografia
- [1] M. L.Diviccaro, B. Fisher and S. Sessa, A common fixed point theorem of Gregus type, Publ. Math. Debrecen 34 (1987), 83-89.
- [2] B. Fisher and S. Sessa, On a fixed point theorem of Gregus, Internat. J. Math. Math. Sci. 9 (1986), 23-28.
- [3] U. C. Gairola, S. L. Singh and J. H. M. Whitfield, Fixed point theorems on product of compact metric spaces, Demonstratio Math. 28 (1995), 541-548.
- [4] K. Goebel, A coincidence theorem, Bull. Acad. Polon. Sci. Ser. Math. 16 (1968), 733-735.
- [5] M. Gregus, Jr., A fixed point theorem in Banach spaces, Boll. Un. Mat. Ital. (5) 17-A (1980), 193-198.
- [6] J. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9 (1986), 771-779.
- [7] G. Jungck, Common fixed points for commuting and compatible maps on compacta, Proc. Amer. Math. Soc. 103 (1998), 977-983.
- [8] G. Jungck, P. P. Murthy and Y. J. Cho, Compatible mappings of type (A) and common fixed points, Math. Japon. 38 (2) (1993), 381-390.
- [9] G. Jungck and H. K. Pathak, Fixed points via "biased maps", Proc. Amer. Math. Soc. 123 (1995), 2049-2060.
- [10] P. P. Murthy, Y. J. Cho and B. Fisher, Compatible mappings of type (A) and common fixed point theorem of Gregus, Glasnik Mat. 30 (50) (1995), 335-341.
- [11] H. K. Pathak, Y. J. Cho and S. M. Kang, Common fixed points of biased maps of type (A) and applications, Internat. J. Math. Math. Sci. 21 (1998), 681-694.
- [12] H. K. Pathak, Y. J. Cho, S. M. Kang and B. Madharia, Compatible mappings of type (C) and common fixed point theorems of Gregus type, Demonstratio Math. 31 (3) (1998), 499-518.
- [13] H. K. Pathak and M. S. Khan, Compatible mappings of type (B) and common fixed point theorems of Gregus type, Czechoslovak Math. J. 45 (120) (1995) 685-698.
- [14] H. K. Pathak and M. S. Khan, A comparision of various types of compatible maps and common fixed points, Indian J. Pure Appl. Math. 28 (4) (1997), 477-485.
- [15] H. K. Pathak, S. N. Mishra and A. K. Kalinde, Common fixed point theorems with applications to nonlinear integral equations, Demonstratio Math. 32 (3) (1999), 547-564.
- [16] B. E. Rhoades, S. Park and K. B. Moon, On generalizations of the Meir-Keeler type contraction maps, J. Math. Anal. Appl. 146 (1990), 482-494.
- [17] S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. (Beograd) (N.S.) 32 (46) (1982), 145-153.
- [18] B. M. L. Tivari and S. L. Singh, A note on recent generalizations of Jungck contraction principle, J. UPGC Acad. Soc. 3 (1986), 13-18.
- [19] E. Zeidler, Nonlinear Functional Analysis and its Applications I (Fixed Point Theorems), Springer-Verlag, 1986.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA1-0041-0009