Czasopismo
2001
|
Vol. 34, nr 2
|
385-402
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The dilation property allows to define an intriguing family of statistical distributions parameterized by the coefficients of respective dilation equation and the dilation scale. The family includes, except some commonly used probability laws, also a wide range of naturally arising singular distributions, which usually are difficult for statistical analysis. But here due to dilation scheme some progress in developing statistical tools can be expected. The paper describes basic properties of dilation distributions, including an extension of the Kershner-Wintner theorem on infinite Bernoulli convolutions, and indicates possible directions for future studies, including preliminary observations on -tatistical inference.
Czasopismo
Rocznik
Tom
Strony
385-402
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- Faculty of Mathematics and Information Science Warsaw University of Technology pl. Politechniki 1 00-661 Warszawa, Poland, wesolo@alpha.mini.pw.edu.pl
Bibliografia
- 1. Billingsley, P. (1979), Probability and Measure, Wiley, New York.
- 2. Brown, G., Moran, W. (1973), A dichotomy for infinite products of discrete measures, Math. Proc. Cambridge Philos. Soc. 73, 307-316.
- 3. Collela, D., Heil, C. (1994), Characterizations of scaling functions: continuous case, SIAM J. Matrix Anal. Appl. 15, 496-518.
- 4. Daubechies, I., Lagarias, J.C. (1991), Two-scale difference equations. I, Existence and global regularity of solutions, SIAM J. Math. Anal. 22, 1388-1410.
- 5. Daubechies, I., Lagarias, J.C. (1992), Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals, SIAM J. Math. Anal. 23, 1031-1079.
- 6. Erdös, P. (1939), On a family of symmetric Bernoulli convolutions, Amer. J. Math. 61, 974-976.
- 7. Erdös, P. (1940), On the smoothness properties of a family of Bernoulli convolutions, Amer. J. Math. 62, 180-186.
- 8. Garsia, A. (1962), Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc. 102, 409-432.
- 9. Gosk, A. (2000), Dilation Distributions, MSc Thesis, Wydzial Fizyki Technicznej i Matematyki Stosowanej, Politechnika Warszawska, Warszawa (in Polish).
- 10. Heil, C., Colella, D. (1994), Dilation equations and the smoothness of compactly supported wavelets, in: Wavelets. Mathematics and Applications (J.J. Benedetto, M.W. Frazier, eds), CRC Press, Boca Raton.
- 11. Lau, K.-S. (1993), Dimension of a family of singular Bernoulli convolutions, J. Funct. Anal. 116, 335-358.
- 12. Lukacs, E. (1970), Characteristic Functions, Hafner, New York.
- 13. Kershner, R., Wintner, A. (1936), On symmetric Bernoulli convolutions, Amer. J. Math. 57, 541-545.
- 14. Strang, G. (1989), Wavelets and dilation equations: A brief introduction, SIAM Rev. 31, 614-627.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA1-0039-0005