Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2001 | Vol. 34, nr 1 | 25-32
Tytuł artykułu

Regularity of generalized MV-algebras

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A generalized MV algebra is constructed by means of an 1-group m a way similar to that an MV-algebra is related to a commutative 1-group, see e.g. [11], [9]. We prove that the variety of generalized MV-algebras is congruence regular and give an explicit description of congruence classes.
Słowa kluczowe
Wydawca

Rocznik
Strony
25-32
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
  • Department of Algebra and Geometry Faculty of Sciences Palacky University Olomouc Tomkova 40 Cz 779 00 Olomouc, Czech Republic, chajda@risc.upol.cz
autor
  • Institute of Algebra and Computational Mathematics Vienna University of Technology Wiedner Hauptstr. 8-10/118 A-1040 Vienna, Austria, g.dorfer@tiiwien.ac.at
  • Institute of Discrete Mathematics Austrian Academy of Sciences Sonnenfelsgasse 19/2 A-1010 Vienna, Austria
autor
  • Department of Algebra and Geometry Faculty of Sciences Palacky University Olomouc Tomkova 40, CZ 779 00 Olomouc, Czech Republic, halas@risc.upol.cz
Bibliografia
  • [1] R. Bělohlávek , MV-algebras don't have a single regularity term, preprint.
  • [2] I. Chajda , Locally regular varieties, Acta Sci. Math. (Szeged) 64 (1998), 431-435.
  • [3] I. Chajda , R. Halaš , J. Rachůnek , Ideals and congruences in generalized MV-algebras, Demonstratio Math. 33 (2000), 213-222.
  • [4] C. C. Chang , Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490.
  • [5] C. C. Chang , A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74-80.
  • [6] B. Csakany , Characterization of regular varieties, Acta Sci. Math. (Szeged) 31 (1970), 187-189.
  • [7] A. DiNola , A. Lettieri , Equational characterization of all varieties of MV-algebras, J. Algebra 221 (1999), 463-474.
  • [8] A. Dvurecenskij , B. Riecan , Weakly divisible MV-algebras and product, J. Math. Anal. Appl. 234 (1999), 208-222.
  • [9] A. Dvurecenskij , Pseudo MV-algebras are intervals in l-groups, (2000), submitted.
  • [10] G. Georgescu , A. Iorgulescu , Pseudo MV-algebras, to appear in Mult.-Valued Logic.
  • [11] D. Mundici , Interpretation of AF C*-algebras in Lukasiewicz sentenial calculus, J . Funct. Anal. 65 (1986), 15-63.
  • [12] J. Rachůnek , A non-commutative generalization of MV-algebras, Czechoslovak Math. J., to appear.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA1-0037-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.