Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | Vol. 33, nr 4 | 753-770
Tytuł artykułu

Existence of periodic solutions for quasilinear ordinary differential eqasilinear ordinary diefferential equations with discontinuities

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider a quasilinear differential equation with discontinuous right hand side and periodic boundary conditions. To obtain an existence theory we pass to a relevant multivalued variant of the original problem, which we solve. Our approach is a mixture of the variational method (for nonsmooth locally Lipschitz functionals) and of the method of upper and Iower solutions. The mixing of these two techniques is made possible by a nonresonance condition below the first nonzero eigenvalue of the one-dimensional p-Laplacian with periodic boundary conditions.
Wydawca

Rocznik
Strony
753-770
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
  • National Technical University, Department of Mathematics, Zografou Campus, Athens 157 80, Greece
  • National Technical University, Department of Mathematics, Zografou Campus, Athens 157 80, Greece, npapg@math.ntua.gr
Bibliografia
  • [1] L. Boccardo, P. Drabek, D. Giachetti, M. Kučera, Generalization of Fredholm alternative for nonlinear differential operators, Nonlinear Anal. - TMA 10 (1986), 1083-1103.
  • [2] F. Browder, P. Hess, Nonlinear mappings of monotone type, J. Funct. Anal. 11 (1972), 251-294.
  • [3] K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129.
  • [4] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York (1983).
  • [5] C. de Coster, Pairs of positive solutions for the one-dimensional p-Laplacian, Nonlinear Anal. - TMA 23 (1994), 669-681.
  • [6] M. Del Pino, M. Elgueta, R. Manasevich, A homotopic deformation along p of a Leray-Schauder degree result and existence for [wzór], J. Differential Eqations 80 (1989), 1-13.
  • [7] P. Drabek, Solvability of boundary value problems with homogeneous ordinary differential operator, Rend. Istit. Mat., Univ. Trieste 8 (1986), 105-124.
  • [8] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York (1977).
  • [9] Z. Guo, Boundary value problems of a class of quasilinear ordinary differential equations, J. Differential Equations 6 (1993), 705-719.
  • [10] N. Kourogenis, N. S. Papageorgiou, Existence for quasilinear multivalued boundary value problems in RN, Glasgow Math. J. 42 (2000), 359-369.
  • [11] M. Otani, A remark on certain nonlinear elliptic equations, Proc. Fac. Sci. Tokai Univ. 19 (1984), 23-28.
  • [12] P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Regional Conference Series in Math. Vol. 65, AMS, Providence, R.I. (1986).
  • [13] R. Showalter, Hilbert Space Methods for Partial Differential Equations, Pitman, London (1977).
  • [14] E. Zeidler, Nonlinear Functional Analysis and its Applications II, Springer-Verlag, New York (1990).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA1-0031-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.