Warianty tytułu
Języki publikacji
Abstrakty
The nonlinear analysis of the Rayleigh - Taylor instability of two immiscible, viscous magnetic fluids in porous media, is performed for two layers, each has a finite depth. The system is subjected to both vertical vibrations and normal magnetic fields. The influence of both surface tension and gravity force is taken into account. Although the motions are assumed to be irrotational in each fluid for small perturbations, weak viscous effects are included in the boundary condition of the normal stress balance. The method of multiple scale expansion is used for the investigation. The evolution of the amplitude is governed by a nonlinear Ginzburg - Landau equation which gives the criterion for modulational instability. When the viscosity and Darcy's coefficients are neglected, the cubic nonlinear Schrodinger equation is obtained. Further, it is shown that, near the marginal state, a nonlinear diffusion equation is obtained in the presence of both viscosity and Darcy's coefficients. Stability analysis and numerical simulations are used to describe linear and nonlinear stages of the interface evolution and then the stability diagrams are obtained. Regions of stability and instability are identified.
Czasopismo
Rocznik
Tom
Strony
65-85
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
autor
autor
autor
autor
- Department of Mathematics, Faculty of Science, Banha University, Banha 13518, Egypt, gamalkhedr99@yahoo.com
Bibliografia
- [1] Lin, C. C.: Theory of Hydrodynamic Stability, Cambridge University Press, Cambridge, 1955.
- [2] Chandrasekhar, S. :Hydrodynamic and Hydromagnetic Stability, Oxford University Press, Oxford, 1961.
- [3] Jackson, D. P. and Miranda, J. A.: Controlling fingering instabilities in rotating ferrofluids, Phys. Rev., 2003, 67, 17301.
- [4] Stevens, P. S. : Patterns in Nature, Little Brown, Boston, 1974.
- [5] Binney, J. and Tremaine, S.: Galactic Dynamics, Princeton University Press, Princeton, 1987.
- [6] Rosensweig, R. E.: Ferrohydrodynamics, Cambridge University Press, Cambridge, 1993.
- [7] Lange, A.: Decay of metastable patterns for the Rosensweig instability: revisiting the dispersion relation, Magnetohydrodynamics , 2003, 39, 65.
- [8] Mctague, J. P.: Magnetoviscosity of magnetic colloids, J. Chem. Phys., 1969, 51, 133.
- [9] Shliomis, M. I.: Magnetic fluids, Sov. Phys. Usp., 1974, 17, 153.
- [10] Berkovsky, B. M. , Medvedev, V.E. and Krakov, M. S.: Magnetic fluids, Engineering Applications, Oxford University Press, Oxford, 1993.
- [11] Elhefnawy, A. R. F.: The effect of magnetic fields on the nonlinear instability of two superposed magnetic streaming fluids, each of a finite depth, Can. J. Phys., 1995, 73, 163.
- [12] Moatimid, G. M.: Nonlinear waves on the surface of a magnetic fluid jet in porous media, Physica A, 2003, 328, 525.
- [13] El-Dib, Y. O. and Ghaly, A. Y.: Nonlinear interfacial stability for magnetic fluids in porous media, Chaos, Solitons and Fractals, 2003, 18, 55.
- [14] Mikaelian, K. O.: Rayleigh-Taylor instability in finite- thickness fluids with viscosity and surface tension, Phys. Rev. E., 1996, 54, 3676.
- [15] Elgowainy, A. and Ashgriz, N.: The Rayleigh-Taylor instability of viscous fluid layers, Phys. Fluids, 1997, 9, 1635.
- [16] Weissman, M. A.: Viscous destabilization of the Kelvin- Helmholtz instability, Notes on summer study Prog. Geophys. Fluid Dyn., Woods Hole Oceanog. Inst., 1970, no. 70- 50.
- [17] Landahl, M. T.: On the stability of a laminar incompressible boundary layer over a flexible surface, J. Fluid Mech., 1962, 13, 609.
- [18] Cairns, R. C.: The role of negative energy waves in some instabilities of parallel flows, J. Fluid Mech., 1979, 92, 1.
- [19] Fautrelle, Y. and Sneyd, A. D.: Instability of a plane conducting free surface submitted to an alternating magnetic field, J. Fluid Mech., 1998, 375, 65.
- [20] Lamb, H.: Hydrodynamics, 6 th edn., Cambridge Univ. Press., Cambridge, 1932.
- [21] Batchelor, G. K.: An Introduction to Fluid Dynamics, Cambridge Univ. Press., Cambridge, 1967.
- [22] Joseph, D. D., Beavers, G. S. and Funada, T.: Rayleigh - Taylor instability of viscoelastic drops at high Weber numbers, J. Fluid Mech., 2002, 453, 109.
- [23] Pan, T. W., Joseph, D. D. and Glowinski, R.: Modelling Rayleigh - Taylor instability of a sedimenting suspension of several thousand circular particles in a direct numerical simulation, J. Fluid Mech., 2001, 434, 23.
- [24] Boer, R. de: Theory of Porous Media, Springer, New York, 2000.
- [25] Nield, D. A. and Bejan, A.: Convection in Porous Media, Springer, New York, 1992.
- [26] El- Dib, Y.O.: Nonlinear hydromagnetic Rayleigh- Taylor instability for strong viscous fluids in porous media, J. Mag. Mag. Mat., 2003, 260, 1.
- [27] Mekhonoshin, V. V. and Lange, A.: Faraday instability on viscous ferrofluids in a horizontal magnetic field : oblique rolls of arbitrary orientation, Phys. Rev., 2002, 65, 061509.
- [28] Feng, J. Q. and Beard, K. V.: Resonances of a conducting drop in an alternating electric field, J. Fluid Mech., 1991, 222, 417.
- [29] Joseph, D. D. and Liao, T. Y.: Potential flows of viscous and viscoelastic fluids, J. Fluid Mech., 1994, 265, 1.
- [30] Joseph, D. D., Belanger, J. and Beavers, G. S.: Breakup of a liquid drop suddenly exposed to a high-speed airstream, Int. J. Multiphase Flow, 1999, 25, 1263.
- [31] Pacitto, G., Flament, C., Bacri, J.-C. and Widom, M.: Rayleigh-Taylor in- stability with magnetic fluids: experiment and theory, Phys. Rev., 2000, 62, 7941.
- [32] Miranda, J. A.: Interfacial instabilities in confined ferrofluids, Braz. J. Phys., 2001, 31, 3, 1-15.
- [33] Netushil, A.: Theory of Automatic Control, MIR Publishers., Moscow, 1978.
- [34] Lange, C. G. and Newell, A. C.: A stability criterion for envelope equations, SIAM J. Appl. Math., 1974, 27, 441.
- [35] Pelap, F. B. and Faye, M. M.: Modulational instability and exact solutions of the modified quintic complex Ginzburg-Landau equation, J. Phys., A: Math. Gen., 2004, 37, 1727.
- [36] Elhefnawy, A. R. F.: Nonlinear Marangoni instability in dielectric superposed fluids, Appl. Math. Phys., (ZAMP), 1990, 41, 669.
- [37] Nayfeh, A. H.: Nonlinear propagation of wave packets on fluid interfaces, J. Appl. Mech., 1976, 98, 584.
- [38] Sharma, R. C. and Bhardwaj, V. K.: Rayleigh-Taylor instability of Newtonian and Oldroydian viscoelastic fluids in porous medium, Z. Naturforsch., 1994, 49a, 927.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD9-0011-0017