Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2001 | Vol. 5, nr 2 | 253-267
Tytuł artykułu

Nonlinear stability problem of ferromagnetic fluids with mass and heat transfer effect

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The nonlinear theory of Kelvin-Helmholtz instability is employed to analyze the instability phenomena of ferromagnetic fluids. The effect of both the magnetic field and the mass and heat transfer at the interface on the instability is investigated. The method of multiple scale expansion is. employed for the investigation. It is shown that, for the Rayleigh-Taylor problem, the mass and heat transfer has no effect. In absence of the magnetic field, the system cannot be stabilized by the finite amplitude effects for two semi-infinite fluid layers up to the third-order.
Wydawca

Rocznik
Strony
253-267
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
  • Department of Mathematics, Faculty of Science Banna University, Banha (13518), Egypt
Bibliografia
  • [1] R.E Rosensweig , Ferrohvdrodvmanies , Dover Publications , Inc., New York (1998).
  • [2] V. G. Bashtovoy, B. N. Berkovsky and A. N. Vislovich, Introduction to Thermomechanics of magnetic fluids, Hemisphere Co., Washington D. C. (1988).
  • [3] A. R. F. Elhefnawy, Nonlinear evolution of two-magnetofluid instability, Int. J. Theor. Phys. 32, 441 (1994).
  • [4] M. Singh , H.K. Khosla and S.K. Malik , Nonlinear dispersive instabilities in Kelvin - Helmholtz MHD flows , J. Plasma Phys. 59 , 27 ( 1998).
  • [5] A. R. F. Elhefnawy, Nonlinear propagation of wave packets in superposed magnetic fluids, Nuovo Cimento 107 B. 1279 (1992).
  • [6] A. R. F. Elhefnawy, The effect of magnetic fields on the nonlinear instability of two streaming fluids, each of a finite depth, Canad. J. Phys. 73, 163(1995)
  • [7] Y.O. El - Dib , Nonlinear stability of Kelvin - Helmholtz waves in magnetic fluids stressed by a time - dependent acceleration and a tangential magnetic field , J. Plasma Phys. 55, 219( 1996) .
  • [8] D. Y. Hsieh, Interfacial stability with mass and heat transfer, Phys. Fluids 21, 745 (1978).
  • [9] D. Y. Hsieh, Nonlinear Rayleigh- Taylor stability with mass and heat transfer, Phys. Fluids 22, 1435 (1979).
  • [10] A. R. Nayak and B. B. Chakroborty, Kelvin-Helmholtz stability with mass and heat transfer, Phys. Fluids 22, 1937 (1984).
  • [11] M. H. Obied Allah and A. A. Yahia, Nonlinear Rayleigh-Taylor instability in the presence of a magnetic field and mass and heat transfer, Astrophys. Space Sei. 181, 183 (1991).
  • [12] S. Komori, R. Nagaosa and Y. Murkami, Turbulence structure and heat and mass transfer mechanism at a gas-liquid interface in a wind-wave tunnel, Appl. Sei. Res. 51, 423 (1993).
  • [13] R. K. Chhabra and S. K. Trehan, The effect of mass and heat transfer on Rayleigh-Taylor stability, Indian J. Pure Appl. Math. 25, 541 (1994).
  • [14] A. A. Mohamed, A. R. F. Elhefnawy and Y. D. Mahmoud, Nonlinear electrohydrodynamic Rayleigh-Taylor instability with mass and heat transfer: effect of a normal field, Canad. J. Phys. 72 , 537 (1994).
  • [15] Y.D. Mahmoud , Parametric third - subharmonic resonance in nonlinear electrohydrodynamic Rayleigh- Taylor instability with mass and heat transfer, Z.Angew. Math. Mech. ( ZAMM ) 79., 855 (1999).
  • [16] G.M. Moatimed and Y.O.EI-Dib, Kelvin - Helmholtz instability of miscible ferrofluids , Int. J. Theort. Phys..35, 231(1996).
  • [17] K. Zakaria , Nonlinear Kelvin - Helmholtz instability of a subsonic gas- liquid interface in the presence of a normal magnetic field , Physica A 273, 248 ( 1999).
  • [18] S. Raghu and P.A. Monkewitz , The bifurcation of a hot round jet to limit - cycle oscillations , Phys. Fluids A 3 (4), 501 (1991 ).
  • [19] L. Debnath , Nonlinear Instability Analysis , WIT Press , Southampton , England (2000).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0033-0090
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.