Czasopismo
2001
|
Vol. 5, nr 1
|
69-80
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The main idea is to show the application of symbolic computations in analysis of engineering systems with random parameters. The general computational methodology is based on the stochastic second order perturbation method and its implementation in the mathematical package MAPLE. The entire approach is displayed on the example of a simple single degree of freedom dynamical system with random spring stiffness. The results of symbolic computations are derived numerically in the form of probabilistic moments of the structural response, computed for the whole analysis time domain. This methodology can be applied to all the engineering problems, where the response can be derived symbolically in the deterministic case, while input parameters of the system are random variables, fields or processes characterized by the probability density function (PDF) of any type.
Czasopismo
Rocznik
Tom
Strony
69-80
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
- Technical University of Lodz, Division of Mechanics of Materials, Al. Politechniki 6, 93-590 Lodz, Poland, marcin@kmm-lx.p.lodz.pl
Bibliografia
- 1. Char BW et al. First Leaves: A Tutorial Introduction to Maple V; Springer-Verlag, 1992.
- 2. Elishakoff I. Random vibration of structures: a personal perspective. Appl. Mech. Rev. 1995; 48(12):809-825.
- 3. Ghanem RG, Spanos PD. Stochastic Finite Elements: A Spectral Approach. Springer- Verlag, 1991.
- 4. Grigoriu M. Stochastic mechanics. Int. J. Sol. & Struct. 1999: 37:197-214.
- 5. Hurtado JE, Barbat AH. Monte-Carlo techniques in computational stochastic mechanics. Arch. Comput. Meth. Engrg. 1998; 5(l):3-30.
- 6. Kamiński M. On some probabilistic failure criteria for composites. In: M. Brandt, V.C. Li, I.H. Marshall, eds., Brittle Matrix Composites 6. 2000; 251-260, Woodhead Publ. Ltd., Warsaw.
- 7. Kamiński M. Stochastic second order perturbation BEM formulation. Engrg. Anal. Bound. Elem. 1999; 2:123-130.
- 8. Kleiber M, Hien TD. The Stochastic Finite Element Method. Wiley, 1992.
- 9. Lin YK, Cai GQ, Probabilistic Structural Dynamics. McGraw-Hill: New York, 1995.
- 10. Sobczyk K, Stochastic Differential Equations: Applications in Physics, Engineering and Mechanics. Kluwer Acad. Publ., 1991.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0033-0076