Warianty tytułu
Języki publikacji
Abstrakty
Ellipses will be considered as subsets of suitably defined Minkowski planes in such a way that, additionally to the well-known area content property A(r) = Π (a,b) r 2, the number Π (a,b) = abΠ reflects a generalized circumference property U (a,b)(r) = 2Π (a,b) r of the ellipses E (a,b)(r) with main axes of lengths 2ra and 2rb, respectively. In this sense, the number Π (a,b) is an ellipse number w.r.t. the Minkowski functional r of the reference set E (a,b)(1). This approach is closely connected with a generalization of the method of indivisibles and avoids elliptical integrals. Further, several properties of both a generalized arc-length measure and the ellipses numbers will be discussed, e.g. disintegration of the Lebesgue measure and an elliptically contoured Gaussian measure indivisiblen representation, wherein the ellipses numbers occur in a natural way as norming constants.
Słowa kluczowe
ellipse number
generalized arc-length
generalized perimeter
generalized method of indivisibles
isoperimetric constant
Minkowski plane
geometric measure representation
intersection-percentage function
generalized uniform distribution on the ellipse
generalized trigonometric functions
generalized elliptical coordinates
disintegration of Lebesgue measure
elliptically contoured Gaussian measure representation
stochastic representation
Czasopismo
Rocznik
Tom
Strony
165-179
Opis fizyczny
Bibliogr. 3 poz.
Twórcy
autor
- University of Rostock, Ulmenstr. 69, Haus 3, 18057 Rostock, Germany, wolf-dieter.richter@uni-rostock.de
Bibliografia
- [1] H. Busemann, The isoperimetric problem in the Minkowski plane, Amer. J. Math. 69 (1947), 863-871.
- [2] W.-D. Richter, Generalized spherical and simplicial coordinates, J. Math. Anal. Appl. 336(2007), 1187-1202.
- [3] W.-D. Richter, On l2,p-circle numbers, Lith. Math. J. 48 (2008), no. 2, 228-234.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0033-0021