Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 19, nr 1 | 85-116
Tytuł artykułu

On properties of a lattice structure for a wavelet filter bank implementation. Part. 1

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents concept of a lattice structure for parametrization and implementation of a Discrete Wavelet Transform. Theoretical properties of the lattice structure are discussed in detail. An algorithm for converting the lattice structure to a wavelet filter bank coeffcients is constructed. A theoretical proof demonstrating that filters implemented by the lattice structure fulfil conditions imposed on an orthogonal wavelet filter bank is conducted.
Wydawca

Rocznik
Strony
85-116
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Institute of Information Technology, Technical University of Łódź, Wólczańska 215, 90-924 Łódź, Poland, jan.stolarek@p.lodz.pl
Bibliografia
  • [1] Lang, M. and Heller, P. N., The design of maximally smooth wavelets, In: Proceedings of the Acoustics, Speech, and Signal Processing, Vol. 3, 1996, pp. 1463-1466.
  • [2] Lipi´nski, P. and Yatsymirskyy, M., On synthesis of 4-tap and 6-tap reversible wavelet filters, Przeglad Elektrotechniczny, , No. 12, 2008, pp. 284-286.
  • [3] Odegard, J. E. and Burrus, C. S., New class of wavelets for signal approximation, In: IEEE International Symposium on Circuits and Systems (ISCAS), May 1996.
  • [4] Regensburger, G., Parametrizing compactly supported orthonormal wavelets by discrete moments, Applicable Algebra in Engineering, Communication and Computing, Vol. 18, No. 6, Dec. 2007, pp. 583-601.
  • [5] Wei, D., Bovik, A., and Evans, B., Generalized coiflets: a new family of orthonormal wavelets, In: Record of the Thirty-First Asilomar Conference on Signals, Systems & Computers, Vol. 2, Nov. 1997, pp. 1259-1263.
  • [6] Zou, H. and Tewfik, A. H., Parametrization of compactly supported orthonormal wavelets, IEEE Transaction on signal processing, Vol. 41, No. 3, March 1993, pp. 1428-1431.
  • [7] Rieder, P., Gotze, J., Nossek, J. S., and Burrus, C. S., Parameterization of orthogonal wavelet transforms and their implementation, Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, Vol. 45, No. 2, Feb. 1998, pp. 217-226.
  • [8] Vaidyanathan, P. P. and Hoang, P.-Q., Lattice structures for optimal design and robust implementation of two-channel perfect-reconstruction QMF banks, Acoustics, Speech and Signal Processing, IEEE Transactions on, Vol. 36, No. 1, Jan. 1988, pp. 81-94.
  • [9] Yatsymirskyy, M., Lattice structures for synthesis and implementation of wavelet transforms, Journal of Applied Computer Science, Vol. 17, No. 1, 2009, pp. 133-141.
  • [10] Białasiewicz, J. T., Falki i aproksymacje, WNT, 2000.
  • [11] Skarbek, W., editor, Multimedia. Algorytmy i standardy kompresji, Akademicka Oficyna Wydawnicza, 1998.
  • [12] Zieli´nski, T., Od teorii do cyfrowego przetwarzania sygnałów, Antykwa, Kraków, 2002.
  • [13] Daubechies, I., Ten Lectures on Wavelets, SIAM, 1992.
  • [14] Stolarek, J., Improving energy compaction of a wavelet transform using genetic algorithm and fast neural network, Archives of Control Sciences, Vol. 20, No. 4, Dec. 2010, pp. 381-397.
  • [15] Stolarek, J. and Lipi´nski, P., Improving digital watermarking fidelity using fast neural network for adaptive wavelet synthesis, Journal of Applied Computer Science, Vol. 18, No. 1, 2010, pp. 61-74.
  • [16] Stasiak, B. and Yatsymirskyy, M., Fast orthogonal neural networks, Lecture Notes in Computer Science, Vol. 4029, July 2006, pp. 142-149.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0028-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.