Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Vol. 16, nr 1 | 151-169
Tytuł artykułu

Čech-completeness and related properties of the generalized compact-open topology

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The generalized compact-open topology τc on partial continuous functions with closed domains in X and values in Y is studied. If Y is a non-countably compact Čech-complete space with a Gδ-diagonal, then τc is Čech-complete, sieve complete and satisfies the p-space property of Arhangel'skii, respectively, if and only if X is Lindelof and locally compact. Lindelofness, paracompactness and normality of τc is also investigated. New results are obtained on Čech-completeness, sieve completeness and the p-space property for the compact-open topology on the space of continuous functions with a general range Y.
Wydawca

Rocznik
Strony
151-169
Opis fizyczny
Bibliogr. 46 poz.
Twórcy
autor
  • Academy of Sciences, Institute of Mathematics, Štefánikova 49, 81473 Bratislava, Slovakia, hola@mat.savba.sk
Bibliografia
  • [1] A. Abd- Allah, Partial maps in algebra and topology, Ph.D. thesis, University of Wales, 1979.
  • [2] A. Abd-Allah and R. Brown, A compact-open topology on partial maps with open domains, J. London Math. Soc. 21 (1980), 480-486.
  • [3] R. Arens, A topology of transformations, Annals of Math. 47 ( 1 946), 480-495.
  • [4] A. V. Arhangel'skii, A class of spaces containing all metric and locally compact spaces, Mat. Sb. 67 (1970), 55-58.
  • [5] J. Back, Concepts of similarity for utility functions, J. of Math. Economics 1 (1986), 721-727.
  • [6] P. I. Booth and R. Brown, Spaces of partial maps, fibered mapping spaces and the compact open topology, Topology Appl. 8 (1978), 181-195.
  • [7] P. Brandi and R. Ceppitelli, Existence, uniqueness and continuous dependence for hereditary differential equations, J. Diff. Equations 81 (1989), 317-339.
  • [8] P. Brandi, R. Ceppitelli and L`. Holá, Topological properties of a new graph topology, J. Convex Anal. 5 (1998), 1-12.
  • [9] P. Brandi, R. Ceppitelli and L`. Holá, Kuratowski convergence on compacta and Hausdorff metric convergence on compacta. Comment. Math. Univ. Carolin. 40 (1999), 309-318.
  • [10] G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer, Dordrecht, 1993.
  • [11] J. Chaber, M. M. Čoban and K. Nagami, On monotonic generalizations of Moore spaces, Čech complete spaces and p-spaces, Fund. Math. 84 (1974), 107-119.
  • [12] T. Chiba, On q-spaces, Proc. Japan Acad. 45 (1969), 453-456.
  • [13] A. Di Concilio and S. A. Naimpally, Proximal set-open topologies and partial maps, Acta Math. Hung. 88 (2000), 227-237.
  • [14] A. Di Concilio and S. A. Naimpally, Function space topologies on (partial) maps, Recent Progress in Function Spaces, Quaderni di Matematica 3, 1998.
  • [15] R. Engelking, General Topology, Helderman, Berlin, 1989.
  • [16] J. Fell, A Hausdorff topology for the closed subsets of locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962), 472-476.
  • [17] V. V. Filippov, Basic topological structures of the theory of ordinary differential equations, Topology in Nonlinear Analysis, Banach Centrum Publications 35 (1996), 171-192.
  • [18] G. Gruenhage, Generalized metric spaces, in Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984.
  • [19] P.M. Gartside and E. A. Reznichenko, Near metric properties of function spaces, Fund. Math. 164 (2000), 97-114.
  • [20] L'. Holá, S. Levi and J. Pelant, Normality and paracompactness of the Fell topology, Proc. Amer. Math. Soc. 127 (1999), 2193-2197.
  • [21] D. Holý and L. Matejička, C-upper semicontinuous and C*- upper semicontinuous multifunctions, Tatra Mt. Math. Publ. 34 (2006), 159-165.
  • [22] L`. Holá, Uniformizability of the generalized compact-open topology, Tatra Mt. Math. Publ. 14 (1998), 219-224.
  • [23] L`. Holá, Complete metrizability of generalized compact-open topology, Topology Appl. 91(1999), 159-167.
  • [24] L`. Holá and L. Zsilinszky, Completeness properties of the generalized compact-open topology on partial functions with closed domains, Topology Appl. 110 (2001), 303-321.
  • [25] L`. Holá and L. Zsilinszky, Vietoris topology on partial maps with compact domains, Topology Appl. 157 (2010), 1439-1447.
  • [26] A. S. Kechris Classical Descriptive Set Theory, Springer, New York, 1994.
  • [27] H. P. Künzi and L. B. Shapiro, On simultaneous extension of continuous partial functions, Proc. Amer. Math. Soc. 125 (1997), 1853-1859.
  • [28] E. Klein and A. Thompson, Theory of Correspondences, Wiley, New York, 1975.
  • [29] K. Kuratowski, Sur l'espace des fonctions partielles, Ann. Mat. Pura Appl. 40 (1955), 61-67.
  • [30] K. Kuratowski, Sur une méthode de métrisation complete de certains espaces d'ensembles compacts, Fund. Math. 43 (1956), 114-138.
  • [31] H. J. Langen, Convergence of dynamic programming models, Mathematics of Operations Research 6 (1981), 493-512.
  • [32] E. Michael, Complete spaces and tri-quotient maps, Illinois J. Math. 21 (1977), 716-733.
  • [33] E. Michael, A note on closed maps and compact sets, Israel J. Math. 2 (1964), 173-176.
  • [34] E. Michael, ?0-spaces, J. Math. Mech. 15 (1966), 983-1002.
  • [35] R. A. McCoy and I. Ntantu, Topological properties of spaces of continuous functions, Springer-Verlag, Berlin, 1988.
  • [36] R. A. McCoy and I. Ntantu, Completeness properties of function spaces. Topology Appl. 22(1986), 191-206.
  • [37] P. J. Nyikos and L. Zsilinszky, Strong ?-favorability of the (generalized) compact-open topology, Atti Sem. Mat. Fis. Univ. Modena 51 (2003), 1-8.
  • [38] P. O'Meara, On paracompactness in function spaces with the compact-open topology, Proc. Amer. Math. Soc. 29 (1971), 183-189.
  • [39] R. Pol, Normality in function spaces, Fund. Math. 84 (1974), 145-155.
  • [40] G. R. Sell, On the Fundamental Theory of Ordinary Differential Equations, J. Differential Equations 1 (1965), 371-392.
  • [41] N. Shimane and T. Mizokami, On the embedding and developability of mapping spaces with compact-open topology. Topology Proc. 24 (1999), 313-322.
  • [42] E. N. Stepanova, Extension of continuous functions and metrizability of paracompact p-spaces, Mat. Zametki 53 (1993), 92-101.
  • [43] R. Telgársky, On sieve-complete and compact-like spaces, Topology Appl. 16 (1983), 61-68.
  • [44] W. Whitt, Continuity of Markov Processes and Dynamic Programs, Yale University, 1975.
  • [45] H. H. Wicke and J. M. Worrell, Jr., On the open continuous images of paracompact Čech-complete spaces, Pacific J. Math. 37 (1971), 265-276.
  • [46] S. K. Zaremba, Sur certaines families de courbes en relation avec la theorie des equations differentielles, Rocznik Polskiego Tow. Matemat. 15 (1936), 83-105.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0017-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.