Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Vol. 16, nr 1 | 31-48
Tytuł artykułu

Fractional white noise perturbations of parabolic Volterra equations

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aim of this work is to extend the results of Clément, Da Prato and Prüss [5] on the fractional white noise perturbation with Hurst parameter H ∈ (0,1). We will obtain similar results and it will turn out that the regularity of the solution u(t) increases with Hurst parameter H.
Wydawca

Rocznik
Strony
31-48
Opis fizyczny
Bibliogr.19 poz.
Twórcy
autor
autor
Bibliografia
  • [1] F. Biagini, Y. Hu, B. Oksendal and T. Zhang, Stochastic calculus for fractional Brownian motion and applications, Probability and its Applications (New York), Springer-Verlag, London, 2008.
  • [2] S. Bonaccorsi, Volterra equations perturbed by a Gaussian noise, Progress in Probability, 59, Birkhäuser Verlag, Basel, 2007, pp. 37-55.
  • [3] Ph. Clément and G. DaPrato, Some results on Stochastic convolutions arising in Volterra equations perturbed by noise, Atti. Accad. Naz. Lincei (9) Mat. Appl. 7 (1996), 147-153.
  • [4] Ph. Clément and G. DaPrato, White noise perturbations of the heat equation in materials with memory, Dynam. Systems Appl. 6 (1997), 441-460.
  • [5] Ph. Clément, G. DaPrato and J. Prüss, White noise perturbation of the linear parabolic viscoelasticity, Rend. Istit. Mat. Univ. Trieste 29 (1997), 207-220.
  • [6] G. DaPrato and J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1992.
  • [7] T. E. Duncan, J. Jakubowski and B. Pasik-Duncan, Stochastic integration for fractional Brownian motion in a Hilbert space, Stoch. Dyn. 6 (2006), 53-75.
  • [8] I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, second ed, Graduate Texts in Mathematics 113, Springer-Verlag, New York, 1991.
  • [9] S. Kwapień and W. A. Woyczyński, Random series and stochastic integrals: single and multiple, Probability and its Applications, Birkhäuser, Boston, MA, 1992.
  • [10] B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (1968), 422-437.
  • [11] S. Monniaux and J. Prüss, A theorem of the Dore-Venni type for noncommuting operators, Trans. Amer. Math. Soc. 349 (1997), 4787-4814.
  • [12] David Nualart, The Malliavin calculus and related topics, second ed, Probability and its Applications (New York), Springer-Verlag, Berlin, 2006.
  • [13] V. Pipiras and M. S. Taqqu, Integration queations related to fractional Brownian motion, Probab. Theory Relat. Fields 118 (2000), 251-291.
  • [14] J. Prüss, Evolutionary integral eąuations and applications, Monographs in Mathematics 87, Birkhäuser, 1993.
  • [15] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives, Gordon and Breach Science Publishers, 1994.
  • [16] S. Tindel, C. A. Tudor and F. Viens, Stochastic evolution equations with fractional Brownian motion, Probab. Theory Related Fields 127 (2003), 186-204.
  • [17] H. Triebel, Theory of function spaces, Monographs in Mathematics 78, Birkhäuser Verlag, Basel, 1983.
  • [18] H. Triebel, Interpolation theory, function spaces, differential operators, Johann Ambrosius Barth, Heidelberg, 1995.
  • [19] C. A. Tudor, Itô formula for the infinite-dimensional fractional Brownian motion, J. Math. Kyoto Univ. 45 (2005), 531-546.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0017-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.