Warianty tytułu
Języki publikacji
Abstrakty
Aim of this work is to extend the results of Clément, Da Prato and Prüss [5] on the fractional white noise perturbation with Hurst parameter H ∈ (0,1). We will obtain similar results and it will turn out that the regularity of the solution u(t) increases with Hurst parameter H.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
31-48
Opis fizyczny
Bibliogr.19 poz.
Twórcy
autor
autor
- Institut für Mathematik, Martin-Luther-Universität Halle-Wittenberg, Theodor-Lieser-Str. 5, 06120 Halle, Germany., stefan.sperlich@mathematik.uni-halle.de
Bibliografia
- [1] F. Biagini, Y. Hu, B. Oksendal and T. Zhang, Stochastic calculus for fractional Brownian motion and applications, Probability and its Applications (New York), Springer-Verlag, London, 2008.
- [2] S. Bonaccorsi, Volterra equations perturbed by a Gaussian noise, Progress in Probability, 59, Birkhäuser Verlag, Basel, 2007, pp. 37-55.
- [3] Ph. Clément and G. DaPrato, Some results on Stochastic convolutions arising in Volterra equations perturbed by noise, Atti. Accad. Naz. Lincei (9) Mat. Appl. 7 (1996), 147-153.
- [4] Ph. Clément and G. DaPrato, White noise perturbations of the heat equation in materials with memory, Dynam. Systems Appl. 6 (1997), 441-460.
- [5] Ph. Clément, G. DaPrato and J. Prüss, White noise perturbation of the linear parabolic viscoelasticity, Rend. Istit. Mat. Univ. Trieste 29 (1997), 207-220.
- [6] G. DaPrato and J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1992.
- [7] T. E. Duncan, J. Jakubowski and B. Pasik-Duncan, Stochastic integration for fractional Brownian motion in a Hilbert space, Stoch. Dyn. 6 (2006), 53-75.
- [8] I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, second ed, Graduate Texts in Mathematics 113, Springer-Verlag, New York, 1991.
- [9] S. Kwapień and W. A. Woyczyński, Random series and stochastic integrals: single and multiple, Probability and its Applications, Birkhäuser, Boston, MA, 1992.
- [10] B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (1968), 422-437.
- [11] S. Monniaux and J. Prüss, A theorem of the Dore-Venni type for noncommuting operators, Trans. Amer. Math. Soc. 349 (1997), 4787-4814.
- [12] David Nualart, The Malliavin calculus and related topics, second ed, Probability and its Applications (New York), Springer-Verlag, Berlin, 2006.
- [13] V. Pipiras and M. S. Taqqu, Integration queations related to fractional Brownian motion, Probab. Theory Relat. Fields 118 (2000), 251-291.
- [14] J. Prüss, Evolutionary integral eąuations and applications, Monographs in Mathematics 87, Birkhäuser, 1993.
- [15] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives, Gordon and Breach Science Publishers, 1994.
- [16] S. Tindel, C. A. Tudor and F. Viens, Stochastic evolution equations with fractional Brownian motion, Probab. Theory Related Fields 127 (2003), 186-204.
- [17] H. Triebel, Theory of function spaces, Monographs in Mathematics 78, Birkhäuser Verlag, Basel, 1983.
- [18] H. Triebel, Interpolation theory, function spaces, differential operators, Johann Ambrosius Barth, Heidelberg, 1995.
- [19] C. A. Tudor, Itô formula for the infinite-dimensional fractional Brownian motion, J. Math. Kyoto Univ. 45 (2005), 531-546.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0017-0005