Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | Vol. 8, nr 2 | 261-278
Tytuł artykułu

Oscillation of solutions to nonlinear neutral delay differential equations

Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
In this paper we shall consider the nonlinear neutral delay differential equations with variable coefficients. Some new sufficient conditions for oscillation of all solutions are obtained. Our results extend and improve some of the well known results in the literature. Some examples are considered to illustrate our main results. The neutral logistic equation with variable coefficients is considered to give some new sufficient conditions for oscillation of all positive solutions about its positive steady state.
Wydawca

Rocznik
Strony
261-278
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
  • Mathematics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt, shsaker@amu.edu.pl
  • Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Matejki 48/4960-769 Poznan, Poland
  • Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Matejki 48/49, 60-769 Poznan, Poland, KUBA@AMU.EDU.PL
Bibliografia
  • [1] Agarwal, R. P., Grace, S, R., O’Regan, D., Oscillation Theory for Difference and Functional Differential Equations, Kluwer, Dordrecht, 2000.
  • [2] Agarwal, R. P., Grace, S. R., O’Regan, D., Oscillation Theory for Second Order Dynamic Equations, (to appear).
  • [3] Bainov, D. D., Mishev, D. P., Oscillation Theory for Neutral Differential Equations with Delay, Adam Hilger, New York, 1991.
  • [4] Boe, E., Chang, V., Dynamics of delayed systems under feedback control, Chem. Engrg. Sci. 44 (1989), 1281-1294.
  • [5] Brayton, R. K., Willoughby, R. A., On the numerical integration of a symmetric system of difference-differential equations of neutral type, J. Math. Anal. Appl., 18 (1976), 182-189.
  • [6] Chen, M. P, Yu, J. S., Huang, L. H., Oscillations of first order neutral differential equations with variable coefficients, J. Math. Anal. Appl. 185 (1994), 288-301.
  • [7] Chuanxi Q., Ladas, G., Oscillation of first-order neutral equations with variable coefficients, Monatsh. Math. 109 (1990), 103-111.
  • [8] Driver, D. R., A mixed neutral systems, Nonlinear Anal. 8 (1984), 155-158.
  • [9] Erbe, L. H., Kong, Q., Zhang, B. G., Oscillation Theory for Functional Differential Equations, Dekker, New York, 1995.
  • [10] Grammatikopoulos, M. -K., Sficas, Y. G., Ladas, G., Oscillation and asymptotic behavior of neutral differential equations with deviating argument, Appl. Anal. 22 (1986), 1-19.
  • [11] Grammatikopoulos, M. K., Sficas, Y. G., Ladas, G., Oscillation and asymptotic behavior of neutral equations with variable coefficients, Rad. Mat. 2 (1986), 279-303.
  • [12] Grammatikopoulos, M. K., Grove, E. A., Ladas, G., Oscillation of first-order neutral delay differential equations, J. Math. Anal. Appl. 120 (1986), 510-520.
  • [13] Guo, B. C., Oscillation of neutral functional differential equations (in Chinese), Acta Math. Appl. Sinica 19 (1996), 513-522.
  • [14] Gyori, L, Oscillation and comparison results in neutral differential equations and their applications to the delay logistic equation, Comp. Math. Appl. 18 (1989), 883-906.
  • [15] Gyori, L, Ladas, G., Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, 1991.
  • [16] Hale, J. K., Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.
  • [17] Hutchinson, G. E., Circular casual systems in ecology, Ann. New York Acad. Sci. 50 (1948), 221-240.
  • [18] Kakutani, S, Markus, L., On the nonlinear difference-differential equation y(t) = [A — By(t — r)]y(t), Contrib. Theory Nonlinear Oscill. 4 (1958), Princeton University Press., Princeton, NJ, 1-18.
  • [19] Kubiaczyk, I, Saker, S. H., Oscillation of solution of neutral delay differential equations, Math. Slovaca 5 2 (2002), 343-359.
  • [20] Ladas, G., Sficas, Y. G., Oscillation of neutral delay differential equations, Canad. Math. Bull. 29(4) (1986), 438-445.
  • [21] Ladde, G. S., Lakshmikantham, V., Zhang, B. Z., Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, New York, 1987.
  • [22] Li, W. T., Saker, S. H., Oscillation of nonlinear neutral delay differential equations and apllications, Ann. Polon. Math. 77 (2001), 39-51.
  • [23] Popov, E. P., Automatic Regulation and Control (in Russian), Nauka, Moscow, 1966.
  • [24] Saker, S. H., Elabbasy, E. M., Oscillation of first order neutral delay differential equations, Kyungpook Math. J. 41(2) (2001), 311-321.
  • [25] Wright, E. M., A nonlinear difference-differential equations, J. Reine Angew. Math. 1 9 4 (1955), 66-87.
  • [26] Yu, J. S., Oscillation of neutral differential equations with oscillating coefficients, Czechoslovak Math. J. 4 4 (1994), 611-622.
  • [27] Yu, J. S., Oscillation of odd order neutral equations with an “integrally small" coefficients, Chinese Ann. Math. Ser. A 16 (1995), 33-42.
  • [28] Yu, J. S., Wang, Z. C., Chuanxi, Q., Oscillation of neutral equations, Bull. Austral. Math. Soc. 1 45 (1992), 195-120
  • [29] Yu, J. S., Chen, M. P., Zhang, H., Oscillation and nonoscillation in neutral equations with integrable coefficients, Comput. Math. Appl. 35(6) (1998), 65-71.
  • [30] Yu, J. S., Yan, Jurang, Oscillation in first order neutral differential equations with“integrally small” coefficients, J. Math. Anal. Appl. 187(2) (1994), 361-370.
  • [31] Yu, J. S., Chen, M. P., Oscillation in neutral equations with an “integrally small” coefficient. Internat, J. Math. Math. Sci. 17(2) (1994), 361-368.
  • [32] Zahariev, A. I., Bainov, D. D., Oscillating properties of the solution of a class of neutral type functional differential equations, Bull. Austral. Math. Soc. 22 (1980), 365-372.
  • [33] Zhang, B. G., Oscillation of first order neutral functional differential equations, J. Math. Anal. Appl. 13 9 (1989), 311-318.
  • [34] Zhang, G., Gao, Y., Nonexistence and existence of eventually positive solutions for neutral delay differential equations (in Chinese), J. Nonlinear Dynam. Sci. Tech. 5 (1998), 334-335.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0014-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.