Warianty tytułu
Języki publikacji
Abstrakty
We consider a mathematical model which describes the frictional contact between a deformable body and an obstacle, say a foundation. The body is assumed to be linear elastic and the contact is modeled with a version of Coulomb's law of dry friction in which the normal stress is prescribed on the contact surface. The novelty consists here in the fact that we consider a slip dependent coefficient of friction and a quasistatic process. We present two alternative yet equivalent formulations of the problem and establish existence and uniqueness results. The proofs are based on a new result obtained in [10] in the study of evolutionary variational inequalities.
Czasopismo
Rocznik
Tom
Strony
63-82
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Departement of Mathematics University "Al. I. Cuza" Bd. Carol No. 11, 6600 Iasi Romania
autor
- Laboratoire de Théorie des Systèmes, Universitéde Perpignan, 52 Avenue de Villeneuve, 66860 Perpignan, France
autor
- Laboratoire de Théorie des Systèmes, Universitéde Perpignan, 52 Avenue de Villeneuve, 66860 Perpignan, France
Bibliografia
- [1] Andersson, L.-E., A quasistatic frictional problem with normal compliance, Nonlinear Anal. 16 (1991), 407-428.
- [2] Andersson, L.-E., A global existence result for a quasistatic contact problem with friction, Adv. Math. Sci. Appl. 5 (1995), 249-286.
- [3] Cocu, M., Pratt, E., and Raous, M., Formulation and approximation of quasistatic frictional contact, Internat. J. Engrg. Sci. 34 (1996), 783-798.
- [4] Duvaut, G. and Lions, J. L., Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976.
- [5] Ionescu, I. R. and Paumier, J. C., On the contact problem with slip rate dependent friction in elastodynamics, European J. Mech. A Solids 13 (1994), 555-568.
- [6] Ionescu, I. R. and Paumier, J. C., On the contact problem with slip dependent friction in elastostatics, Internat. J. Engrg. Sci. 34 (1996), 471-491.
- [7] Ionescu, I. R. and Sofonea, M., Functional and Numerical Methods in Viscoplasticity, Oxford University Press, Oxford, 1993.
- [8] Kikuchi, N. and Oden, J. T., Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM Stud. Appl. Math. 8, Philadelphia, 1988.
- [9] Klarbring, A., Mikelic, A. and Shillor, M., Frictional contact problems with normal compliance, Internat. J. Engrg. Sci. 26 (1988), 811-832.
- [10] Motreanu, D. and Sofonea, M., Evolutionary variational inequalities arising in quasistatic frictional contact problems for elastic materials, Abstr. Appl. Anal. 4 (1999), 255-279.
- [11] Necas, J. and Hlavacek, I., Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction, Elsevier, Amsterdam, 1981.
- [12] Oden, J. T. and Martins, J. A. C., Models and computational methods for dynamic friction phenomena, Comput. Methods Appl. Mech. Engrg. 52 (1985), 527-634.
- [13] Panagiotopoulos, P. D., Inequality Problems in Mechanical and Applications, Birkhauser, Basel, 1985.
- [14] Rabinowicz, E., Friction and Wear of Materials, Wiley, New York, 1965.
- [15] Raous, M., Jean, M., and Moreau, J. J. (eds.), Contact Mechanics, Plenum Press, New York, 1995.
- [16] Scholz, C. H., The Mechanics of Earthquakes and Faulting, Cambridge Univ. Press, Cambridge, 1990.
- [17] Shillor, M. (ed.), Recent advances in contact mechanics, Math. Comput. Modelling 28(4-8) (1998).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0014-0005