Warianty tytułu
Języki publikacji
Abstrakty
Each statistic, which is pairwise sufficient and (in a natural sense) countably complete, is a minimal pairwise sufficient statistic. The Basu theorem for pairwise sufficient statistic is also obtained.
Czasopismo
Rocznik
Tom
Strony
285-292
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
- Faculty of Mathematics University of Łódź Banacha 22 90-238 Łódź, Poland
Bibliografia
- [1] Bahadur, R. R., Statistics and subfields, Ann. Math. Statist. 26 (1955), 490-497.
- [2] Bahadur, R. R., Sufficiency and statistical decision functions, Ann. Math. Statist. 25 (1954), 423-462.
- [3] Basu, D. and Ghosh, J. K., Sufficient statistics in sampling from a finite universe, Proc. 36th Session Internat. Statist. Inst, (in ISI Bulletin) (1969), 850-859.
- [4] Billingsley, P., Probability and Measure, John Wiley & Sons, New York, 1979.
- [5] Burkholder, D. L., Sufficiency in the undominated case, Ann. Math. Statist. 32 (1961), 1191-1200.
- [6] Fisher, R. A. , On the mathematical foundation of theoretical statistics, Philos. Trans. Roy. Soc. London Ser. A 222 (1922), 309-368
- [7] Ghosh, J. K., Morimoto, H. and Yamada, S., Neyman factorization and minimality of pairwise sufficient subfields, Ann. Statist. 9 (1981), 514-530.
- [8] Halmos, P. R., Savage, L. J., Application of the Radon-Nikodym theorem of the theory of sufficient statistics, Ann. Math. Statist. 20 (1949), 225-241.
- [9] Heyer, H. and Yamada, S., On an extended notion of common conditional probability, Probab. Math. Statist. 15 (1995), 353-363.
- [10] Le Cam, L., Sufficiency and approximate sufficiency, Ann. Math. Statist. 35 (1964), 1419-1455.
- [11] Schervish, M. J., Theory of Statistics, Springer-Verlag, New York, 1995.
- [12] Siebert, E., Pairwise sufficiency, Z. Wahrsch. Verw. Gebiete 46 (1979), 237-246.
- [13] Yamada, S., Pivotal Measures in Statistical Experiments and Sufficiency, Springer- Verlag, New York, 1994.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0013-0037