Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2001 | Vol. 7, nr 2 | 271-283
Tytuł artykułu

On sets determined by sequences of quasi-continuous functions

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the paper is to characterize those sets of points at which sequence of real functions from a given class F converges as well as sets of points of convergence to infinity of such sequences. As F we consider quasi-continuous functions and some other subclasses of Baire measurable functions.
Wydawca

Rocznik
Strony
271-283
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
Bibliografia
  • [1] Borsik, J., Limit of simply continuous functions, Real Anal. Exchange 18 (1992- 93), 270-275.
  • [2] Kechris, A. S., Classical Descriptive Set Theory, Springer-Verlag, New York, 1995.
  • [3] Kuratowski, K., Topologie, Vol 1, PWN, Warszawa, 1958.
  • [4] Lipiński, J. S., Sets of points of convergence to infinity of a sequence of continuous functions (in Russian), Fund. Math. 51 (1962), 35-43.
  • [5] Lunina, M. A., Sets of convergence and divergence of a sequences of real-valued continuous functions on a metric space (in Russian), Mat. Zametki 17 (1975), 205-217.
  • [6] Natkaniec, T., On the maximum and the minimum of quasi-continuous functions, Math. Slovaca 42 (1992), 103-110.
  • [7] Neubrunnová, A., On certain generalizations of the notion of continuity, Mat. Časopis. 23 (1973), 374-380.
  • [8] Oxtoby, J., Measure and Category, Springer-Verlag, New York, 1971.
  • [9] Sierpiński, W., Sur Tensemble des points de convergence d’une suite de fonctions continues, Fund. Math. 2 (1921), 41-49.
  • [10] Wesołowska, J., On sets of convergence points of sequences of some real functions, Real Anal. Exchange 25(2) (1999-2000), 937-942.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0013-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.