Warianty tytułu
Języki publikacji
Abstrakty
We consider the numerical solution of quasilinear elliptic Neumann problems. The basic difficulty is the non-injectivity of the operator, which can be overcome by suitable factorization. We extend the gradient-finite element method (GFEM), introduced earlier by the authors for Dirichlet problems, to the Neumann problem. The algorithm is constructed and its convergence is proved.
Czasopismo
Rocznik
Tom
Strony
257-269
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- Eötvös Lorând University, Department of Applied Analysis, H-1518 Budapest, pf. 120, Hungary, faragois@cs.elte.hu
autor
- Eötvös Lorând University, Department of Applied Analysis, H-1518 Budapest, pf. 120, Hungary, karatson@cs.elte.hu
Bibliografia
- [1] Axelsson, O., Karat.son J., Double Sobolev gradient preconditioning for elliptic problems, Report 0016, Dept. Math., Univ. Nijmegen, April 2000 (submitted to Numer. Methods Partial Differential Equations).
- [2] Bornemann, F.A., Erdmann, B., Kornhuber, R., A posteriori error estimates for elliptic problems in two and three space dimensions, SIAM J. Numer. Anal. 33(3) (1996), 1188-1204.
- [3] Egorov, Yu.V., Shubin, M.A., Encyclopedia of Mathematical Sciences, Partial Differential Equations /, Springer, Berlin, 1992.
- [4] Faierman, M., Regularity of solutions of an elliptic BVP in a rectangle, Comm. Partial Differential Equations 12 (1987), 285-305.
- [5] Faragó, I., Karatson, J., The gradient-finite element method for elliptic problems, Comput. Math. Appl. 42 (2001), 1043-1053.
- [6] Gajewski, H., Gröger, K., Zacharias. K.. Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974.
- [7] Grisvard, P., Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.
- [8] Hackbusch, W., Theorie und Numerik elliptischer Differentialgleichungen, Teubner, Stuttgart, 1986.
- [9] Gill, D., Tadmor. E., An 0(N2) method for computing the eigensystem of N x N symmetric tridiagonal matrices by the divide and conquer approach, SIAM J. Sei. Comput. 11(1) (1990), 161-173.
- [10] Hsiao, G. C., A modified Galerkin scheme for elliptic equations with natural boundary conditions, in: “Numerical Mathematics and Applications”, IMACS Trans. Sei. Comput. 85, I, North-Holland, Amsterdam-New York, 1986, 193-197.
- [11] Kantorovich, L.V., Akilov, G.P., Functional Analysis, Pergamon Press, Oxford- Elmstad, 1982.
- [12] Karátson, J., The gradient method for non-differentiable operators in product Hilbert spaces and applications to elliptic systems of quasilinear differential equations, J. Appl. Anal. 3(2) (1997), 225-237.
- [13] Karátson, J., Gradient method for non-injective operators in Hilbert space with application to Neumann problems, Appl. Math. 26(3) (1999), 333-346.
- [14] Kovács, I., Lendvai, J., Vörös, G., Effect of precipitation structure on the work hardening process, Materials Sei. Forum 217-222 (1996), 1275-1280.
- [15] Křížek, M., Neittaanmäki, P., Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications, Kluwer Academic Publishers, Dordrecht, 1996.
- [16] Lieberman., G.M., The conormal derivative problem for equations of variational type in nonsmooth domains, TVans. Amer. Math. Soc., 330 (1992), 41-67.
- [17] Neuberger, J. W., Sobolev Gradients and Differential Equations, Lecture Notes in Math. 1670. Springer-Verlag, Berlin, 1997.
- [18] Strang, G., Fix, G.J., An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, 1973.
- [19] Szabó, B., Babuśka, I., Finite Element Analysis, J.Wiley and Sons, New York, 1991.
- [20] Vainberg, M., Variational Method and the Method of Monotone Operators in the Theory of Nonlinear Equations, J. Wiley and Sons, New York-Toronto, 1973.
- [21] Ženíšek, A., Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations, Comput. Math. Appl., Academic Press, Inc., London, 1990.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0013-0035