Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2001 | Vol. 7, nr 2 | 257-269
Tytuł artykułu

Gradient-finite element method for nonlinear Neumann problems

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider the numerical solution of quasilinear elliptic Neumann problems. The basic difficulty is the non-injectivity of the operator, which can be overcome by suitable factorization. We extend the gradient-finite element method (GFEM), introduced earlier by the authors for Dirichlet problems, to the Neumann problem. The algorithm is constructed and its convergence is proved.
Wydawca

Rocznik
Strony
257-269
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • Eötvös Lorând University, Department of Applied Analysis, H-1518 Budapest, pf. 120, Hungary, faragois@cs.elte.hu
  • Eötvös Lorând University, Department of Applied Analysis, H-1518 Budapest, pf. 120, Hungary, karatson@cs.elte.hu
Bibliografia
  • [1] Axelsson, O., Karat.son J., Double Sobolev gradient preconditioning for elliptic problems, Report 0016, Dept. Math., Univ. Nijmegen, April 2000 (submitted to Numer. Methods Partial Differential Equations).
  • [2] Bornemann, F.A., Erdmann, B., Kornhuber, R., A posteriori error estimates for elliptic problems in two and three space dimensions, SIAM J. Numer. Anal. 33(3) (1996), 1188-1204.
  • [3] Egorov, Yu.V., Shubin, M.A., Encyclopedia of Mathematical Sciences, Partial Differential Equations /, Springer, Berlin, 1992.
  • [4] Faierman, M., Regularity of solutions of an elliptic BVP in a rectangle, Comm. Partial Differential Equations 12 (1987), 285-305.
  • [5] Faragó, I., Karatson, J., The gradient-finite element method for elliptic problems, Comput. Math. Appl. 42 (2001), 1043-1053.
  • [6] Gajewski, H., Gröger, K., Zacharias. K.. Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974.
  • [7] Grisvard, P., Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.
  • [8] Hackbusch, W., Theorie und Numerik elliptischer Differentialgleichungen, Teubner, Stuttgart, 1986.
  • [9] Gill, D., Tadmor. E., An 0(N2) method for computing the eigensystem of N x N symmetric tridiagonal matrices by the divide and conquer approach, SIAM J. Sei. Comput. 11(1) (1990), 161-173.
  • [10] Hsiao, G. C., A modified Galerkin scheme for elliptic equations with natural boundary conditions, in: “Numerical Mathematics and Applications”, IMACS Trans. Sei. Comput. 85, I, North-Holland, Amsterdam-New York, 1986, 193-197.
  • [11] Kantorovich, L.V., Akilov, G.P., Functional Analysis, Pergamon Press, Oxford- Elmstad, 1982.
  • [12] Karátson, J., The gradient method for non-differentiable operators in product Hilbert spaces and applications to elliptic systems of quasilinear differential equations, J. Appl. Anal. 3(2) (1997), 225-237.
  • [13] Karátson, J., Gradient method for non-injective operators in Hilbert space with application to Neumann problems, Appl. Math. 26(3) (1999), 333-346.
  • [14] Kovács, I., Lendvai, J., Vörös, G., Effect of precipitation structure on the work hardening process, Materials Sei. Forum 217-222 (1996), 1275-1280.
  • [15] Křížek, M., Neittaanmäki, P., Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications, Kluwer Academic Publishers, Dordrecht, 1996.
  • [16] Lieberman., G.M., The conormal derivative problem for equations of variational type in nonsmooth domains, TVans. Amer. Math. Soc., 330 (1992), 41-67.
  • [17] Neuberger, J. W., Sobolev Gradients and Differential Equations, Lecture Notes in Math. 1670. Springer-Verlag, Berlin, 1997.
  • [18] Strang, G., Fix, G.J., An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, 1973.
  • [19] Szabó, B., Babuśka, I., Finite Element Analysis, J.Wiley and Sons, New York, 1991.
  • [20] Vainberg, M., Variational Method and the Method of Monotone Operators in the Theory of Nonlinear Equations, J. Wiley and Sons, New York-Toronto, 1973.
  • [21] Ženíšek, A., Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations, Comput. Math. Appl., Academic Press, Inc., London, 1990.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0013-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.