Warianty tytułu
Języki publikacji
Abstrakty
A cardinal related to compositions of Sierpiński-Zygmund functions will be considered. A combinatorial characterization of the cardinal is given and is used to answer some questions of K. Ciesielski and T. Natkaniec. It is shown that the bounding number of the continuum may be strictly smaller than continuum.
Czasopismo
Rocznik
Tom
Strony
243-255
Opis fizyczny
Bibliogr. 6 poz.
Twórcy
autor
- Department of Mathematics Loyola University New Orleans, LA 70118 USA, fejord@hotmail.com
Bibliografia
- [1] Bartoszyński, T. and Judah, H., Set Theory: On the Structure of the Real Line, A. K. Peters, Wellesley, 1995.
- [2] Ciesielski, K., Set Theory for the Working Mathematician, London Math. Soc. Stud. Texts 39, Cambridge Univ. Press, Cambridge, 1997.
- [3] Ciesielski, K. and Natkaniec, T., Algebraic properties of the class of Sierpiński- Zygmund functions, Topology Appl. 79 (1997), 75-99.
- [4] Kechris, A., Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer, New York, 1995.
- [5] Shelah, S., On Cielsielski’s problems, J. Appl. Anal. 3(2) (1997), 191-209.
- [6] Sierpiński, W. and Zygmund, A., Sur une fonction qui est discontinue sur tout ensemble de puissance du continu, Fund. Math. 4 (1923), 316-318.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0013-0034