Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2001 | Vol. 7, nr 2 | 209-224
Tytuł artykułu

The Nevanlinna theorem of the classical theory of moments revisited

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The canonical solutions of the truncated Hamburger moment problem (both in the classical and degenerate cases) are found. The Nevanlinna theorem which provides the noncanonical solutions of the truncated Hamburger problem is also rederived in the framework of the operator approach.
Wydawca

Rocznik
Strony
209-224
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
  • Department of Applied Mathematics ETSII, Polytechnic University E-46071 Valencia Spain, murrea@mat.upv.es
  • Department of Applied Mathematics ETSII, Polytechnic University E-46071 Valencia Spain
  • Department of Applied Mathematics ETSII, Polytechnic University E-46071 Valencia Spain
Bibliografia
  • [1] Adamyan, V. M. and Tkachenko, I. M., High-frequency electrical conductivity of a collisional plasma, High Temp. (USA) 21, (1983), 307.
  • [2] Akhiezer, N. 1., The Classical Moment Problem and Some Related Questions in Analysis, Hafher Publishing Company, New York, 1965.
  • [3] Akhiezer, N. I. and Glazman, I. M., Theory of Linear Operators in Hilbert Space, Frederick Ungar Publishing Company, New York, 1963, Vol II, § 59.
  • [4] Curto, R. E. and Fialkow, L. A., Recursiveness, positivity, and truncated moment problems, Houston J. Math. 17 (1991), 603; see also: Curto, R. E. and Fialkow, L. A., Solutions of the Truncated Moment Problem, Mem. Amer. Math. Soc. 119 (1996).
  • [5] Hamburger, H., Uber eine Erweiterung des Stieltjesschen Momentenproblems, Math. Ann. 81 (1920), 235; ibid, 82 (1921), 120; ibid, 82 (1921), 168.
  • [6] Jones, W. B., Njâstad, O., Thron, W. J., Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle, Bull. London Math. Soc. 21 (1989), 113-152.
  • [7] Krein, M. G., The theory of extensions of semibounded Hermitian operators and its applications (in Russian), Mat. Sb. 20 (1947), 431-495.
  • [8] M.G. Krein, The description of all solutions of the truncated power moment problem and some problems of operator theory, Mat. Issled. 2(2) (1967), 114-132; English translation, Amer. Math. Soc. Transi. Ser. 2 95 (1970), 219-234.
  • [9] Krein, M. G., Nudel’man, A. A., The Markov Moment Problem and Extremal Problems, Transi. Math. Monographs 50 (1977), Amer. Math. Soc., Providence, RI.
  • [10] Landau, H. J. (Ed.), Moments in Mathematics, Proc. Sympos. Appl. Math. 37 (1987), Amer. Math. Soc., Providence, RI.
  • [11] Ortner, J., Rylyuk, V. M., Tkachenko, I. M., Reflectivity of cold magnetized plasmas, Phys. Rev. E 50 (1994), 4937.
  • [12] Shohat, J. A., Tamarkin, J. D., The Problem of Moments, Math. Surveys Monographs 1 (1943), Amer. Math. Soc., Providence, RI, (4th Ed. 1970).
  • [13] Stieltjes, T. J., Recherches sur les fractions continues, Ann. Fac. Sei. Toulouse Math. 8 (1894), J76-J122; ibid, 9 (1895), A5-A47.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0013-0031
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.