Warianty tytułu
Języki publikacji
Abstrakty
A cardinal related to compositions of Sierpiński-Zygmund functions from the left, Cleft(SZ), will be considered. We answer a question of K. Ciesielski and T. Natkaniec. In particular, we show that cl(SZ) = (2c)+ if R is not a union of less than c-many meager sets and c is a limit cardinal. If c = ◛, then cl(SZ) is equal to the bounding number of c.
Czasopismo
Rocznik
Tom
Strony
81-89
Opis fizyczny
Bibliogr. 6 poz.
Twórcy
autor
- Department of Mathematics University of Louisville Louisville, KY 40292 USA
Bibliografia
- [1] Bartoszyński, T. and Judah, H., Set Theory. On the Structure of the Real Line, A. K. Peters, Ltd., Wellesley, 1995.
- [2] Ciesielski, K., Set Theory for the Working Mathematician, London Math. Soc. Stud. Texts 39, Cambridge Univ. Press, Cambridge, 1997.
- [3] Ciesielski, K. and Natkaniec, T., Algebraic properties of the class of Sierpiński- Zygmund functions, Topology Appl. 79 (1997), 75-99.
- [4] Jordan, F., Cardinal invariants connected with adding real functions, Real Anal. Exchange 22(2) (1996-97), 696-713.
- [5] Kechris, A., Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer- Verlag, New York, 1995.
- [6] Sierpiński, W. and Zygmund, A., Sur une fonction qui est discontinue sur tout ensemble de puissance du continu, Fund. Math. 4 (1923), 316-318.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0013-0023